

Lecture 10T

Produced by Dr. Worldwide

Special Types of Models

- Special linear programming problems
 - Transportation
 - Transshipment
 - Assignment
- Subset of network flow problems

Transportation

- Characteristics of transportation problems
 - Product is being transported from a finite set of sources to a finite set of destinations
 - Sources supply a fixed amount of the product and destinations have a fixed demand for the product
- Balanced when total supply equals total demand
- Unbalanced rule
 - If supply smaller than demand, replace equality demand constraints with \leq
 - If supply larger than demand, replace equality supply constraints with \leq
- Q: How would we modify the linear program to exclude certain routes that are either prohibited?

Transshipment

- Extension of the transportation model
- Diagram of transshipment problem

• Q: What is the difference between transportation and transshipment?

Transshipment

- Transshipment adds intermediate transshipment points between the sources and the destinations
- Possible routes in transshipment models
 - Sources to transshipment points
 - Transshipment points to destinations
 - Sources to destinations
- Book also states routes can exist between sources and between destinations
- Classic example of transshipment points are warehouses

- Farms to grain elevators to flour mills
- Table of locations

Farms	Grain Elevator	Flour Mills
1. Nebraska	3. Kansas City	6. Chicago
2. Colorado	4. Omaha	7. St. Louis
	5. Des Moines	8. Cincinnati

- Nebraska and Colorado have become the sources of the wheat
- Each of the two farms produces 300 tons of wheat
- Kansas City, Omaha, and Des Moines have become our transshipment points

• General diagram of transshipment problem

• Shipping costs from farms to the grain elevators

	Grain elevator				
Farm	3. Kansas City	4. Omaha	5. Des Moines		
1. Nebraska	\$16	\$10	\$12		
2. Colorado	15	14	17		

• Shipping costs from grain elevators to flour mills

	Mill			
Grain elevator	6. Chicago	7. St. Louis	8. Cincinnati	
3. Kansas City	\$6	\$8	\$10	
4. Omaha	7	11	11	
5. Des Moines	4	5	12	

• Demand from flour mills

Mill	Demand	
6. Chicago	200	
7. St. Louis	100	
8. Cincinnati	300	
Total	600 tons	
_		

- Q: How to transport grain (in tons) from farms to flour mills with minimal costs?
- Decision variables
 - x_{ij} = number of tons of grain to ship from *i* to *j*
 - $i, j \in \{1, 2, 3, 4, 5, 6, 7, 8\}$ and $i \neq j$

- Objective function
 - $Z = 16x_{13} + 10x_{14} + 12x_{15} + 15x_{23} + 14x_{24} + 17x_{25}$ $+ 6x_{36} + 8x_{37} + 10x_{38} + 7x_{46} + 11x_{47} + 11x_{48} + 4x_{56} + 5x_{57} + 12x_{58}$
- In this problem, total supply (600) equals total demand (600)
- Supply constraints

 $x_{13} + x_{14} + x_{15} = 300$ $x_{23} + x_{24} + x_{25} = 300$ (Nebraska Supply) (Colorado Supply)

• Demand constraints

 $x_{36} + x_{46} + x_{56} = 200$ $x_{37} + x_{47} + x_{57} = 100$ $x_{38} + x_{48} + x_{58} = 300$ (Chicago Demand)(St. Louis Demand)(Cincinnati Demand)

- Transshipment points have constraints that express equality between what goes in and what goes out
- Transshipment constraints

 $x_{13} + x_{23} = x_{36} + x_{37} + x_{38}$ $x_{14} + x_{24} = x_{46} + x_{47} + x_{48}$ $x_{15} + x_{25} = x_{56} + x_{57} + x_{58}$

- Integer constraints $x_{ij} \in \{0, 1, 2, \cdots\}$
- Download MillsTransship.xlsx from course website from link Sheet 1
- Try to find the solution using Excel Solver $x_{15} = 300 \& x_{24} = 300 \& x_{48} = 300 \& x_{56} = 200 \& x_{57} = 100$

(Kansas City Transshipment)(Omaha Transshipment(Des Moines Transshipment

- Similar to the transportation model with slight difference
- In the assignment model, the supply at each source and demand at each destination is exactly one
- Think of the sources as unique units that need to be assigned to specific recipients
- There is cost associated to each pair of source and destination

Ex: ACC Officials

- Four basketball games in the Atlantic Coast Conference (ACC) on a night
- Conference wants to assign four teams of officials to the four games
- Supply is always one team of officials
- Demand is always requiring only one team of officials
- Q: How should we assign the four teams of officials so that distance is minimized?

	Game Sites			
Officials	1. Raleigh	2. Atlanta	3. Durham	4. Clemson
A	201	90	180	160
В	100	70	130	200
С	175	105	140	170
D	80	65	105	120

Ex: ACC Officials

- Decision variables
 - x_{ij} = indicator of whether official team *i* is assigned to game in city *j*
 - $i \in \{A, B, C, D\}$
 - $j \in \{1,2,3,4\}$
- Objective function

 $Z = 201x_{A1} + 90x_{A2} + 180x_{A3} + 160x_{A4}$ +100x_{B1} + 70x_{B2} + 130x_{B3} + 200x_{B4} +175x_{C1} + 105x_{C2} + 140x_{C3} + 170x_{C4} +80x_{D1} + 65x_{D2} + 105x_{D3} + 120x_{D4}

• Use multiple choice constraints to ensure supply fulfills demand

Ex: ACC Officials

• Constraints

 $x_{A1} + x_{A2} + x_{A3} + x_{A4} = 1$ $x_{B1} + x_{B2} + x_{B3} + x_{B4} = 1$ $x_{C1} + x_{C2} + x_{C3} + x_{C4} = 1$ $x_{D1} + x_{D2} + x_{D3} + x_{D4} = 1$ (Official Team A)(Official Team B)(Official Team C)(Official Team D)

(City 1)

(City 2)

(City 3)

(City 4)

 $x_{A1} + x_{B1} + x_{C1} + x_{D1} = 1$ $x_{A2} + x_{B2} + x_{C2} + x_{D2} = 1$ $x_{A3} + x_{B3} + x_{C3} + x_{D3} = 1$ $x_{A4} + x_{B4} + x_{C4} + x_{D4} = 1$

 $x_{ij} \in \{0,1\}$

The End

Dale