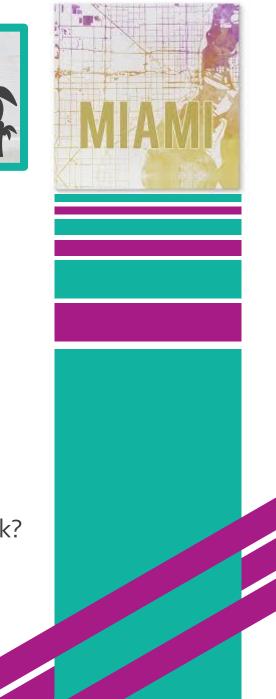


Lecture 13T

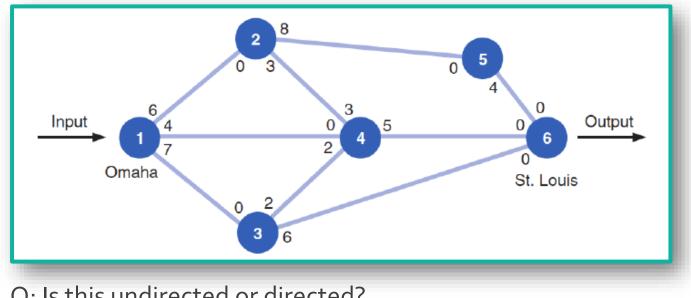
Produced by Dr. Worldwide

Maximal Flow Problem

- Sometimes the branches in a network have limitations on the capacity
- Suppose we are trying to move some resource (e.g. water, gas, oil) through a network of pipelines
- Pipelines are represented as edges in a graph (directed or undirected) and each has a finite capacity that determines how much can flow through them
- Source node produces the resource and a destination node receives it
- Q: What is the maximum amount of flow that can be moved through the network?

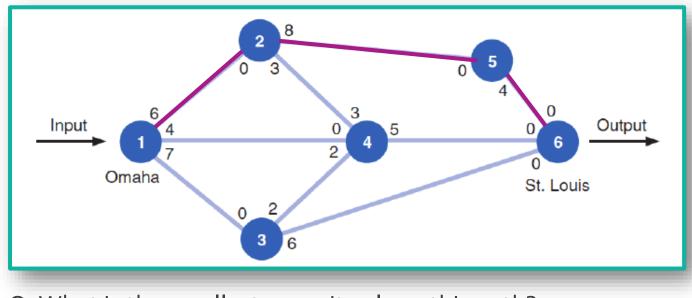


- Scott Tractor Company ships tractor parts from Omaha to St. Louis by railroad
- A contract limits the number of railroad cars available on each branch
- Graph of network showing the capacity (# of cars) leaving a node along an edge



• Q: Is this undirected or directed?

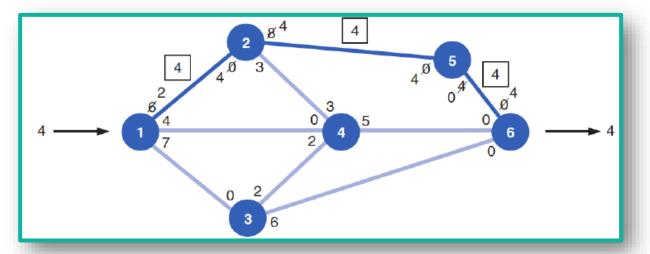
- We begin by choosing an arbitrary path from the origin to the destination
- A path can be defined by an ordering of nodes separated by hyphens
- For example, choose the path 1-2-5-6



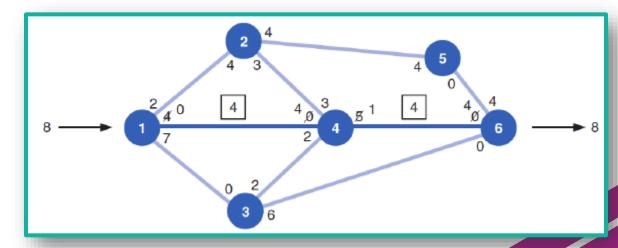
• Q: What is the smallest capacity along this path?



- The smallest capacity along the path is 4, corresponding to edge (5,6)
- A directed edge can be defined as an ordered pair of two nodes
- The capacity along the path 1-2-5-6 is 4
- Update by decreasing the capacities along the edges (1,2), (2,5), and (5,6) by 4 and increasing the capacities along the edges (6,5), (5,2), and (2,1) by 4

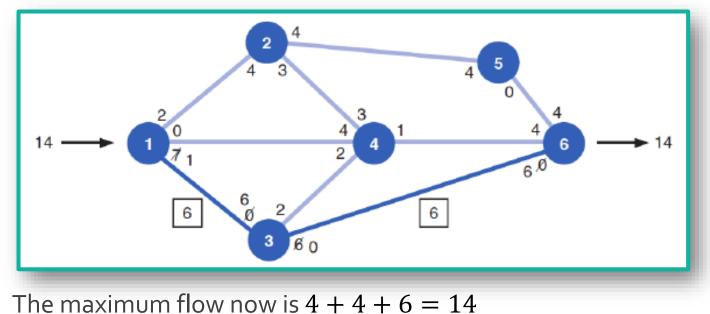


- Next, choose an arbitrary path from the updated graph
- For example, choose 1-4-6
- The smallest capacity is 4 because of (1,4); therefore, the capacity of 1-4-6 is 4
- Update the capacities in the same way as before by decreasing in the direction 1-4-6 and increasing in the direction 6-4-1
- Update maximum flow
 4 + 4 = 8

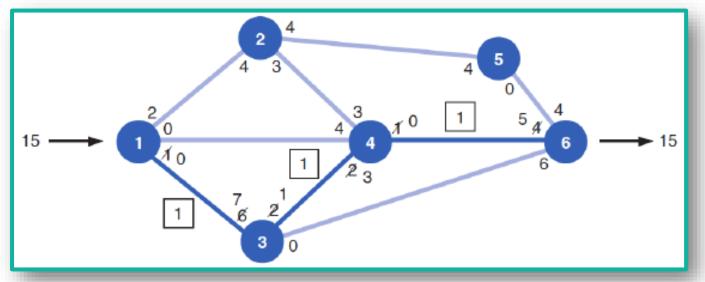


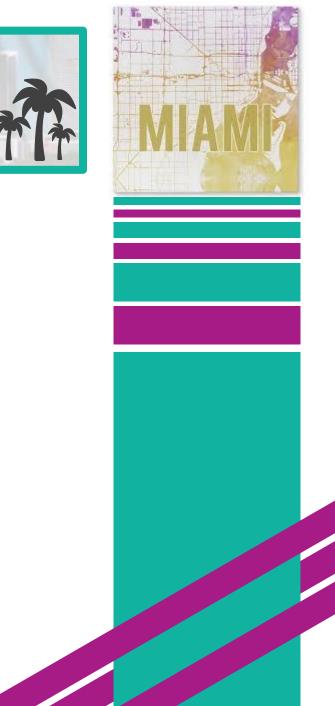
- Choose another arbitrary path from the updated graph like 1-3-6
- The smallest capacity is 6 corresponding to edge (3,6)

• Update the capacities according to the capacity of 1-3-6 which is 6

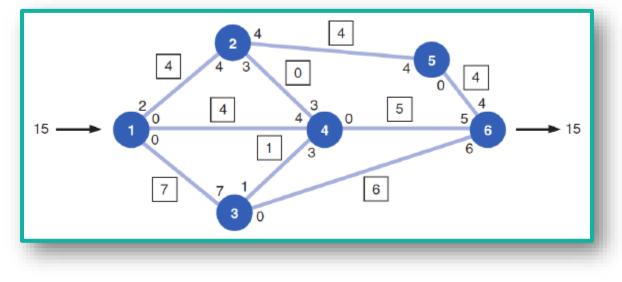


- There are only two paths with available capacity from the node 1 to node 6
 - 1-2-4-6
 - 1-3-4-6
- We arbitrarily choose 1-3-4-6 with a capacity of 1 because of edge (4,6)
- Update graph and maximum flow is 4 + 4 + 6 + 1 = 15





• No more paths to choose from in the updated graph

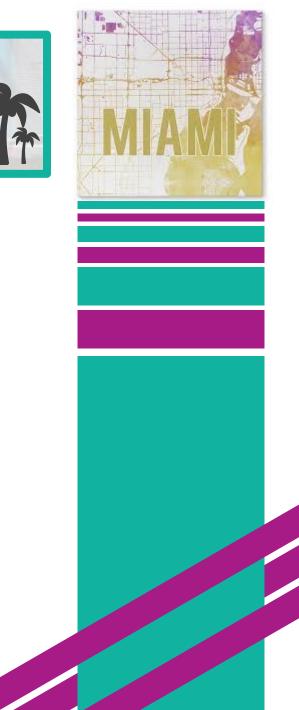


- Algorithm terminates at this point
- We say the maximum flow from node 1 to node 6 is 15

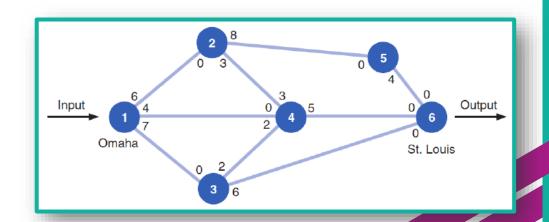


Maximal Flow Problem

- Ford-Fulkerson's algorithm for identifying the maximal flow of a network
- Step 1: Arbitrarily select any path in the network from the origin to destination
- Step 2: Adjust the capacities at each node by subtracting the maximal flow for the path selected in the 1st step
- Step 3: Add the maximal flow along the path in the opposite direction
- Step 5: Repeat previous steps until there are no more paths with flow capacity

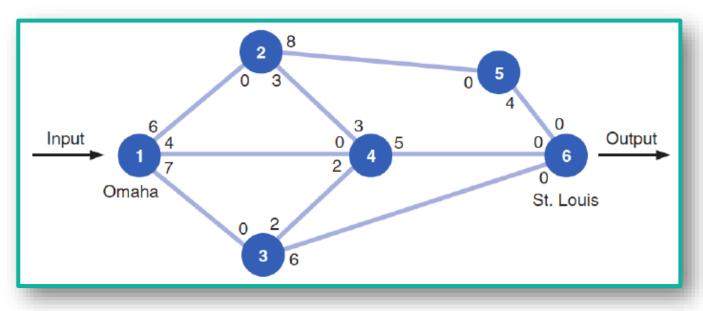


- Decision variables
 - x_{ij} = amount of flow going through the edge (i, j)
 - $i = \{1, 2, 3, \cdots, 6\}$
 - $j = \{1, 2, 3, \cdots, 6\}$
- Objective function
 - Want to maximize the flow from node 1 to node 6
 - The flow conservation principle says that these must be equal
 - $Z = x_{12} + x_{13} + x_{14}$
 - $Z = x_{56} + x_{46} + x_{36}$
 - Either one works

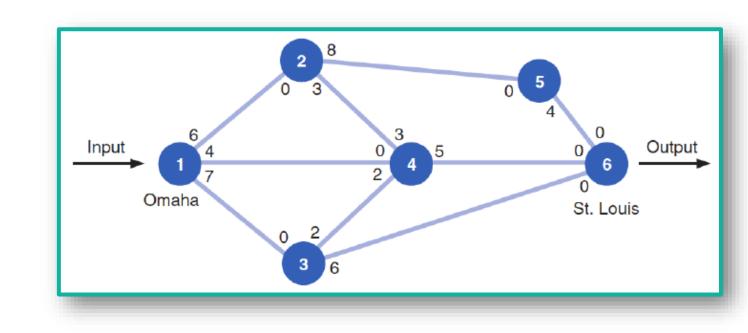


- Constraints to control flow
 - $x_{12} + x_{13} + x_{14} = x_{56} + x_{46} + x_{36}$
 - $x_{12} + x_{42} = x_{24} + x_{25}$
 - $x_{13} + x_{43} = x_{34} + x_{36}$
 - $x_{14} + x_{24} + x_{34} = x_{42} + x_{43} + x_{46}$
 - $x_{25} = x_{56}$

(Origin to destination)
(Through node 2)
(Through node 3)
(Through node 4)
(Through node 5)



- Constraints to control capacity
 - $x_{12} \le 6$
 - $x_{13} \le 7$
 - $x_{14} \le 4$
 - $x_{24} \le 3$
 - $x_{25} \le 8$
 - $x_{34} \le 2$
 - $x_{36} \le 6$
 - $x_{42} \le 3$
 - $x_{43} \le 2$
 - $x_{46} \leq 5$
 - $x_{56} \le 4$



- Constraints to control domain
 - $x_{ij} \in \{0, 1, 2, 3, \cdots\}$

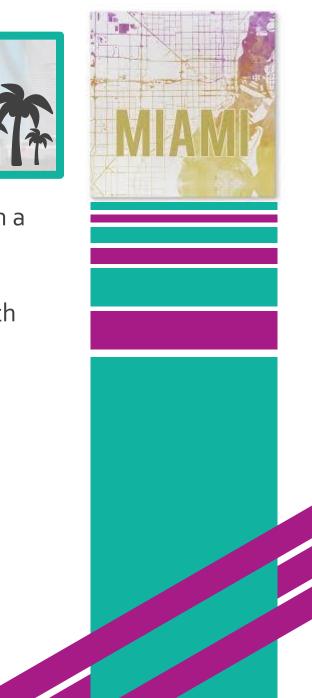
• Download MaximalFlow.xlsx from course website from link Sheet 1

Maximal flow								
	F 1 ()	• •						
	Edge (i,j)							
Select branch	i	j	Capacity					
5	1 2		6		Flow constraints:			
6	1	3	7		Node	In	Out	Network Flow
4	1	4	4		2	5	5	0
1	2	4	3		3	6	6	0
4	2	5	8		4	5	5	0
0	3	4	2		5	4	4	0
6	3	6	6		Dest./Origin	15	15	0
0	4	2	3					
0	4	3	2					
5	4	6	5					
4	5	6	4					
Maximal flow=	15	=A12	+A15+A	16				

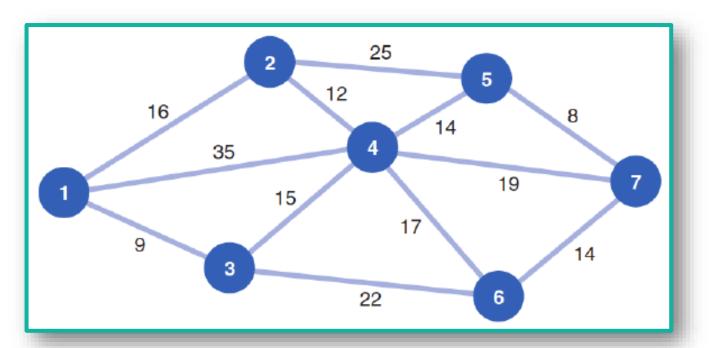


Minimal Spanning Tree

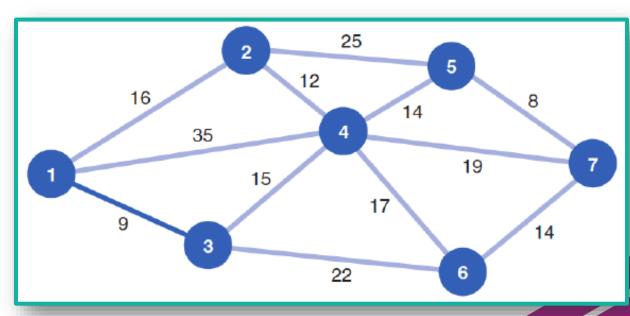
- Like the shortest route problem where goal was to find the shortest path from a single origin to all other nodes in a network
- The minimal spanning tree is the set of edges having the minimum total length that connects all the nodes in the network
- A minimal spanning tree has no origin node



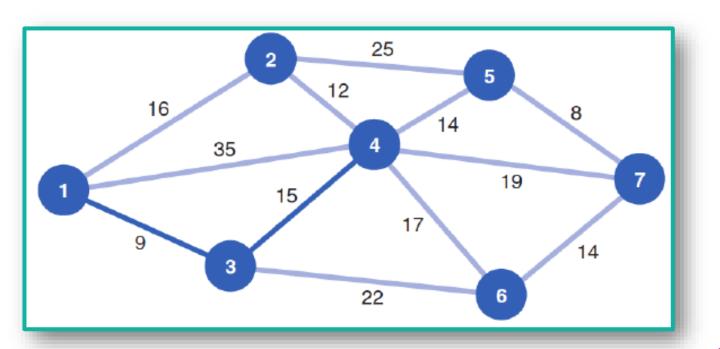
- Cable company wants to connect all 7 houses in a neighborhood
- Network shows length of cable in feet required for each possible path
- Q: What is the shortest path that spans (connects) all the houses?



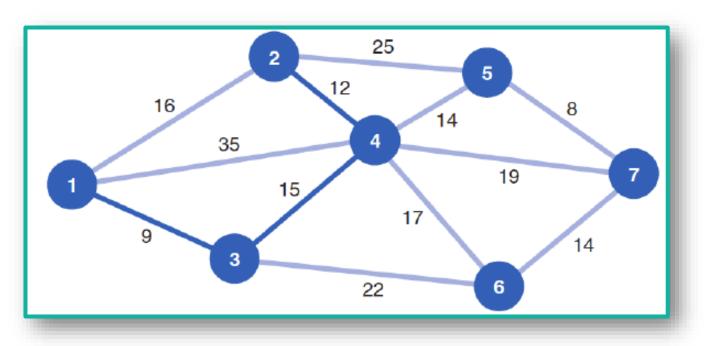
- We can start from any node, but the convention is to start with node 1
- Define the set of nodes in the spanning tree as $S = \{1\}$
- Find the shortest edge from node 1, add that edge to the spanning tree, and the corresponding node to set *S*
- This would be edge (1,3)
- Update $S = \{1,3\}$

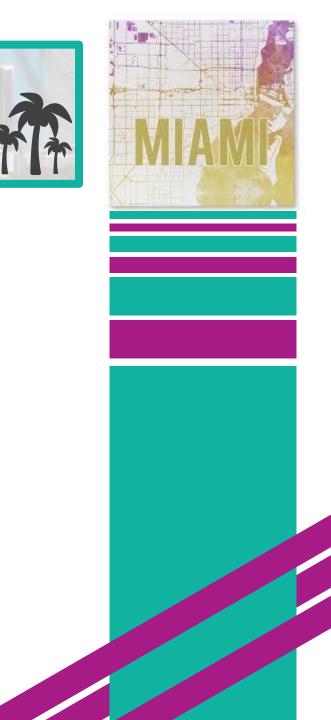


- Choose shortest edge connecting nodes in $S = \{1,3\}$ to the other nodes
- This would be edge (3,4)
- Update $S = \{1,3,4\}$

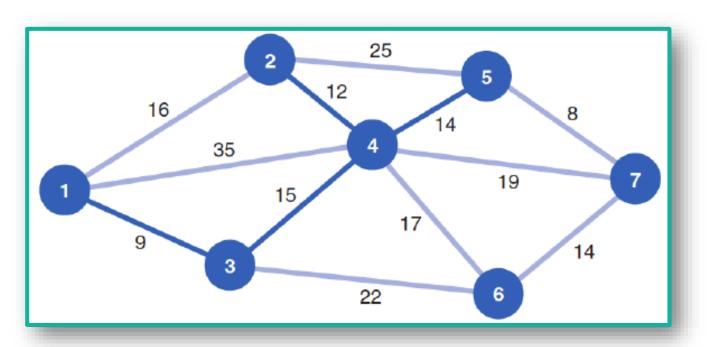


- Choose shortest edge connecting nodes in $S = \{1,3,4\}$ to the other nodes
- This would be edge (4,2)
- Update $S = \{1,3,4,2\}$

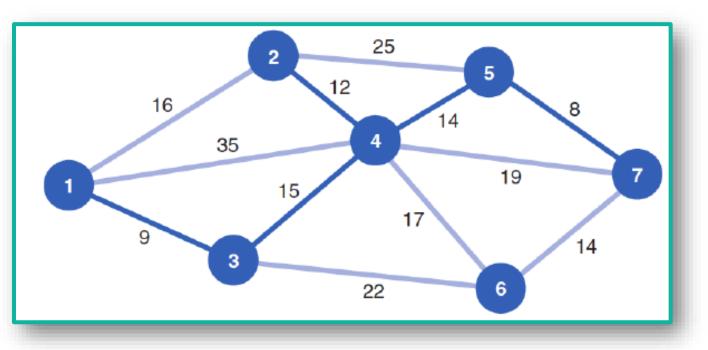




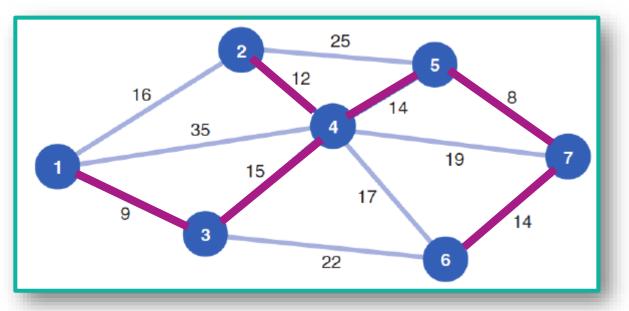
- Choose shortest edge connecting nodes in $S = \{1,3,4,2\}$ to the other nodes
- This would be edge (4,5)
- Update $S = \{1,3,4,2,5\}$

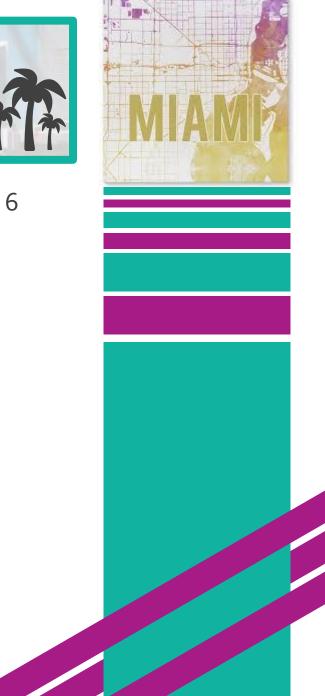


- Choose shortest edge connecting nodes in $S = \{1,3,4,2,5\}$ to the other nodes
- This would be edge (5,7)
- Update $S = \{1,3,4,2,5,7\}$



- Choose shortest edge connecting nodes in $S = \{1,3,4,2,5,7\}$ to the last node 6
- This would be edge (7,6)
- Length of the minimal spanning tree is the sum of lengths of chosen edges
 9 + 15 + 12 + 14 + 8 + 14 = 72





Minimal Spanning Tree

- Prim algorithm for identifying the minimal spanning tree
- Step 1: Select an arbitrary node to start (usually node 1)
- Step 2: Select the node closest to the starting node to join the spanning tree
- Step 3: Select the closest node not currently in the spanning tree
- Step 4: Repeat the 3rd step until all nodes have joined the spanning tree

The End

Dale