

Lecture 14T

Produced by Dr. Worldwide

• Recall the solution the minimal spanning tree problem for the cable example

Length of the minimal spanning tree is the sum of lengths of chosen edges
9 + 15 + 12 + 14 + 8 + 14 = 72

- Decision variables
 - $x_{ij} = indicator \ if \ edge \ (i,j) \ is \ selected$
 - $i = \{1, 2, 3, \cdots, 6\}$
 - $j = \{2, 3, \cdots, 7\}$
 - *i* < *j*
- Objective function
 - We want to minimize total distance
 - Let d_{ij} represent the distance along (i, j)
 - $Z = \sum_{i=1}^{6} \sum_{j=i+1}^{7} d_{ij} x_{ij}$

- Constraint to ensure each node selected at least once
 - $x_{12} + x_{14} + x_{13} \ge 1$
 - $x_{12} + x_{24} + x_{25} \ge 1$
 - $x_{13} + x_{34} + x_{36} \ge 1$
 - $x_{14} + x_{24} + x_{34} + x_{45} + x_{46} + x_{47} \ge 1$
 - $x_{25} + x_{45} + x_{57} \ge 1$
 - $x_{36} + x_{46} + x_{67} \ge 1$
 - $x_{47} + x_{57} + x_{67} \ge 1$

(Node 2) (Node 3) (Node 4) (Node 5) (Node 6) (Node 7)

(Node 1)

• Observe the following pattern of spanning trees (possibly minimal)

- Problematic cases that violate pattern
 - Case 1: Looping spanning tree

• Case 2: Disconnected spanning trees

- Constraint to ensure spanning tree identified
 - Cable company needs to connect a network of 7 nodes
 - Exactly 7-1=6 branches need to be selected for a spanning tree
 - $\sum_{i=1}^{6} \sum_{j=i+1}^{7} x_{ij} = 6$
- Computer solution is difficult without Excel QM
- Difficult to ensure that every subset of *k* vertices has at most k-1 edges

Overview of Network Models

- Three types of problems related to graphs with weighted edges
 - Shortest route
 - Maximal flow
 - Minimal spanning tree
- All three problems had custom algorithms and linear programming formulations
- Shortest route and minimal spanning tree are similar but give different solutions

• Network of 7 nodes with undirected edges

- Q: What is the shortest route from node 1 to all other nodes?
- Q: What is the minimal spanning tree of the network?

- Shortest route algorithm
 - Start with permanent set {1}
 - Shortest adjacent node to node 1 is node 2 along edge (1,2)
 - Add node 2 to permanent set
 - Keep track of edge (1,2)

Set	Path	Distance
{1}	1-2	5
	1-3	8

- Shortest route algorithm
 - New permanent set {1,2}
 - Shortest node to node 1, not in permanent set, is node 3
 - Add node 3 to permanent set
 - Keep track of edge (1,3)

Set	Path	Distance
{1}	1-2	5
{1 , 2}	1-3	8
	1-2-3	11
	1-2-4	12

Set	Path	Distance
{1}	1-2	5
{1,2}	1-3	8
{1,2,3}	1-2-4	12
	1-3-4	18
	1-3-5	14
	1-3-6	18

Set	Path	Distance
{1}	1-2	5
{1,2}	1-3	8
{1,2,3}	1-2-4	12
{1,2,3,4}	1-2-4-5	21
	1-3-5	14
	1-3-6	18
	1-2-4-7	20

Set	Path	Distance
{1}	1-2	5
{1,2}	1-3	8
{1,2,3}	1-2-4	12
{1,2,3,4}	1-3-5	14
{1,2,3,4,5}	1-3-6	18
	1-3-5-6	17
	1-2-4-7	20
	1-3-5-7	19

Set	Path	Distance
{1}	1-2	5
{1,2}	1-3	8
{1,2,3}	1-2-4	12
{1,2,3,4}	1-3-5	14
{1,2,3,4,5}	1-3-5-6	17
{1,2,3,4,5,6}	1-2-4-7	20
	1-3-5-6-7	23
	1-3-5-7	19

• Shortest route algorithm

Closest	Path	Distance
2	1-2	5
3	1-3	8
4	1-2-4	12
5	1-3-5	14
6	1-3-5-6	17
7	1-3-5-7	19

• The sum of all the edges from the final spanning tree 5+7+8+6+3+5=34

- Minimal spanning tree algorithm
 - Start with node 1 in spanning set {1}
 - Shortest adjacent node to any node in spanning set is node 2
 - Add node 2 to spanning set
 - Keep track of edge (1,2)

Set	Path	Distance
{1}	1-2	5
	1-3	8

- Minimal spanning tree algorithm
 - Consider spanning set {1,2}
 - Shortest adjacent node to any node in spanning set is node 3
 - Add node 3 to spanning set
 - Keep track of edge (2,3)

Set	Path	Distance
{1}	1-2	5
{1 , 2}	1-3	8
	2-3	6
	2-4	7

- Minimal spanning tree algorithm
 - Consider spanning set {1,2,3}
 - Shortest adjacent node to any node in spanning set is node 5
 - Add node 5 to spanning set
 - Keep track of edge (3-5)

Set	Path	Distance
{1}	1-2	5
{1 , 2}	2-3	6
{1,2,3}	2-4	7
	3-4	10
	3-5	6
	3-6	10

• Minimal spanning tree algorithm

Set	Path	Distance
{1}	1-2	5
{1,2}	2-3	6
{1,2,3}	3-5	6
{1,2,3,5}	2-4	7
	3-4	10
	5-4	9
	3-6	10
	5-6	3

• Minimal spanning tree algorithm

Set	Path	Distance
{1}	1-2	5
{1,2}	2-3	6
{1,2,3}	3-5	6
{1,2,3,5}	5-6	3
{1,2,3,5,6}	2-4	7
	3-4	10
	5-4	9
	5-7	5
	6-7	6

• Minimal spanning tree algorithm

Set	Path	Distance
{1}	1-2	5
{1,2}	2-3	6
{1,2,3}	3-5	6
{1,2,3,5}	5-6	3
{1,2,3,5,6}	5-7	5
{1,2,3,5,6,7}	2-4	7
	3-4	10
	5-4	9
	7-4	8

• Minimal spanning tree algorithm

Added	Path	Distance
2	1-2	5
3	2-3	6
5	3-5	6
6	5-6	3
7	5-7	5
4	2-4	7

• The sum of all the edges from the minimal spanning tree 5+7+6+6+3+5=32

• Solution comparison

• Different solutions because algorithms target different goals

The End

Dale