


# Lecture 17T

Produced by Dr. Worldwide

- Goals listed in order based on priority
  - Achieve a 60%/40% ratio of Martians to Earthers at each of the asteroids
  - Minimize the amount of traveling that people will have to do, ideally no more than 30,000 million miles
  - Keep all asteroids close to capacity and minimize overcrowding proportionally allocating the excess among the asteroids
- Q: How can we formulate and solve a goal programming model to help these representatives with their dilemma?
- Decision variables
  - $x_{ij}$  = Number of martians from asteroid *i* assigned to asteroid *j*
  - $y_{ij}$  = Number of earthers from asteroid *i* assigned to asteroid *j*
  - $i, j \in \{V, H, P, C\}$




- Goal 1: Achieve fair representation in all 4 asteroids
  - Consider perfect balance for Vesta

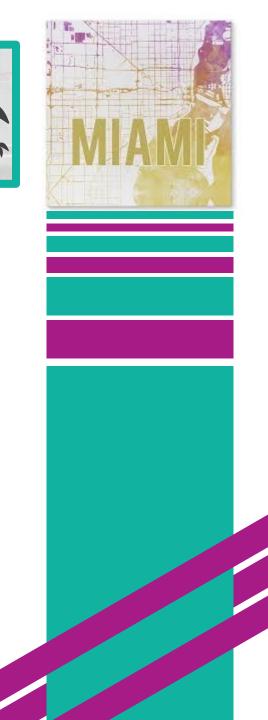
| Percent Martian _ 0.6                                                                                    |  |
|----------------------------------------------------------------------------------------------------------|--|
| Percent Earther $-\frac{1}{0.4}$                                                                         |  |
| $\frac{\frac{Total Martian}{Total Earther}}{\frac{Total Martian}{Total Earther}} = \frac{0.6}{0.4}$      |  |
| $\frac{Total\ Martian}{=} = \frac{0.6}{100}$                                                             |  |
| $\frac{\overline{Total Earther}}{\overline{Total Martian}} = \frac{0.6}{0.4}$ $\overline{Total Earther}$ |  |

Total Earther 0.4

0.4(Total Martian) - 0.6(Total Earther) = 0 $0.4(x_{VV} + x_{HV} + x_{PV} + x_{CV}) - 0.6(y_{VV} + y_{HV} + y_{PV} + y_{CV}) = 0$ 



- Goal 1: Achieve fair representation in all 4 asteroids
  - Adding deviational variables for Vesta


 $0.4(x_{VV} + x_{HV} + x_{PV} + x_{CV}) - 0.6(y_{VV} + y_{HV} + y_{PV} + y_{CV}) + d_1^- - d_1^+ = 0$ 

• Consider constraints for each of the asteroids

 $\begin{array}{l} 0.4(x_{VV}+x_{HV}+x_{PV}+x_{CV})-0.6(y_{VV}+y_{HV}+y_{PV}+y_{CV})+d_{1}^{-}-d_{1}^{+}=0\\ 0.4(x_{VH}+x_{HH}+x_{PH}+x_{CH})-0.6(y_{VH}+y_{HH}+y_{PH}+y_{CH})+d_{2}^{-}-d_{2}^{+}=0\\ 0.4(x_{VP}+x_{HP}+x_{PP}+x_{CP})-0.6(y_{VP}+y_{HP}+y_{PP}+y_{CP})+d_{3}^{-}-d_{3}^{+}=0\\ 0.4(x_{VC}+x_{HC}+x_{PC}+x_{CC})-0.6(y_{VC}+y_{HC}+y_{PC}+y_{CC})+d_{4}^{-}-d_{4}^{+}=0 \end{array}$ 

- To accomplish our goal, we want all of these deviational variables to be as small as possible
- First priority objective

Minimize  $P_1(d_1^- + d_1^+ + d_2^- + d_2^+ + d_3^- + d_3^+ + d_4^- + d_4^+)$ 

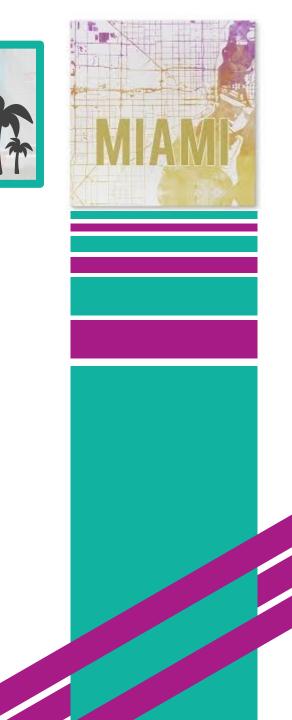



- Goal 2: Minimize total travel to not much more than 30,000 million miles
  - Recall the following table in millions of miles

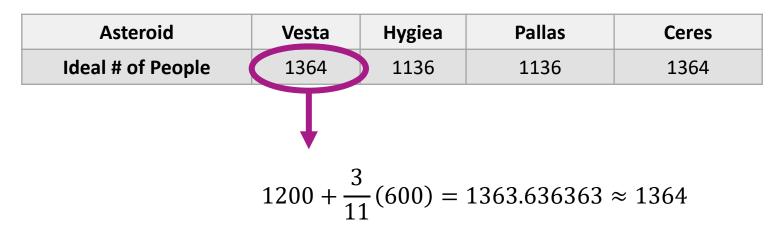
| Asteroid | Vesta | Hygiea | Pallas | Ceres |
|----------|-------|--------|--------|-------|
| Vesta    | -     | 30     | 12     | 20    |
| Hygiea   | 30    | -      | 18     | 26    |
| Pallas   | 12    | 18     | -      | 24    |
| Ceres    | 20    | 26     | 24     | -     |

• Formulation for constraint based on total miles

 $30(x_{VH} + y_{VH} + x_{HV} + y_{HV}) + 12(x_{VP} + y_{VP} + x_{PV} + y_{PV})$  $+ 20(x_{VC} + y_{VC} + x_{CV} + y_{CV}) + 18(x_{HV} + y_{HV} + x_{VH} + y_{VH})$  $+ 26(x_{HC} + y_{HC} + x_{CH} + y_{CH}) + 24(x_{PC} + y_{PC} + x_{CP} + y_{CP}) + d_5^- - d_5^+ = 30,000$ 


• Updated objective function for second priority Minimize  $P_1(d_1^- + d_1^+ + d_2^- + d_2^+ + d_3^- + d_3^+ + d_4^- + d_4^+), P_2(d_5^+)$ 




- Goal 3: Minimize overcrowding at each asteroid, proportionally allocating the excess among the asteroids
  - Recall the following table

| Asteroid | # of Martians | # of Earthers | Capacity |
|----------|---------------|---------------|----------|
| Vesta    | 1000          | 300           | 1200     |
| Hygiea   | 450           | 800           | 1000     |
| Pallas   | 1050          | 400           | 1000     |
| Ceres    | 500           | 500           | 1200     |

- Recall that there are 5,000 total people for capacity of 4,400
- The excess of 600 people needs to be split between the asteroids
- Q: How can we handle this proportionally?



- Goal 3: Minimize overcrowding at each asteroid, proportionally allocating the excess among the asteroids
  - We want to manage the excess according to the capacities
  - Asteroids that are bigger should take larger portions of the overflow
  - We prefer if Vesta and Ceres take 1200/4400 = 3/11 of the excess
  - We prefer if Hygiea and Pallas take 1000/4400 = 5/22 of the excess
  - Capacities are expanded to handle the overflow (rounded up)



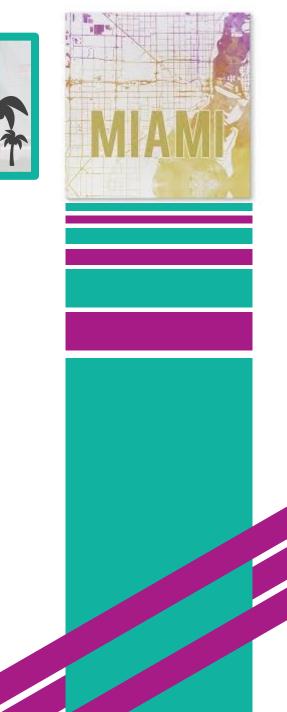


- Goal 3: Minimize overcrowding at each asteroid, proportionally allocating the excess among the asteroids
  - Constraints with deviational variables

 $\begin{aligned} x_{VV} + y_{VV} + x_{HV} + y_{HV} + x_{PV} + y_{PV} + x_{CV} + y_{CV} + d_6^- - d_6^+ &= 1364 \\ x_{VH} + y_{VH} + x_{HH} + y_{HH} + x_{PH} + y_{PH} + x_{CH} + y_{CH} + d_7^- - d_7^+ &= 1136 \\ x_{VP} + y_{VP} + x_{HP} + y_{HP} + x_{PP} + y_{PP} + x_{CP} + y_{CP} + d_8^- - d_8^+ &= 1136 \\ x_{VC} + y_{VC} + x_{HC} + y_{HC} + x_{PC} + y_{PC} + x_{CC} + y_{CC} + d_9^- - d_9^+ &= 1364 \end{aligned}$ 

• Updated objective function for third priority

Minimize 
$$P_1(d_1^- + d_1^+ + d_2^- + d_2^+ + d_3^- + d_3^+ + d_4^- + d_4^+),$$
  
 $P_2(d_5^+),$   
 $P_3(d_6^- + d_6^+ + d_7^- + d_7^+ + d_8^- + d_8^+ + d_9^- + d_9^+)$ 




- Additional constraints
  - We cannot move more people than what is currently available

| Asteroid | # of Martians | # of Earthers | Capacity |
|----------|---------------|---------------|----------|
| Vesta    | 1000          | 300           | 1200     |
| Hygiea   | 450           | 800           | 1000     |
| Pallas   | 1050          | 400           | 1000     |
| Ceres    | 500           | 500           | 1200     |

• List of constraints

 $x_{VV} + x_{VH} + x_{VP} + x_{VC} = 1000$   $y_{VV} + y_{VH} + y_{VP} + y_{VC} = 300$   $x_{HV} + x_{HH} + x_{HP} + x_{HC} = 450$   $y_{HV} + y_{HH} + y_{HP} + y_{HC} = 800$   $x_{PV} + x_{PH} + x_{PP} + x_{PC} = 1050$   $y_{PV} + y_{PH} + y_{PP} + y_{PC} = 400$   $x_{CV} + x_{CH} + x_{CP} + x_{CC} = 500$  $y_{CV} + y_{CH} + y_{CP} + y_{CC} = 500$ 



• Additional integer constraints

 $\begin{aligned} x_{ij} &\in \{0,1,\cdots\} \\ y_{ij} &\in \{0,1,\cdots\} \end{aligned}$ 

- Download Expanse.xlsx from link Sheet 1 on course website
- Tab called Priority 1
  - Matrices of decision variables

| Martians | Vesta | Hygiea | Pallas | Ceres | Total | Deficit | Surplus |
|----------|-------|--------|--------|-------|-------|---------|---------|
| Vesta    | 0     | 0      | 0      | 0     | 0     |         | Sulpius |
| Hygiea   | 0     | 0      | 0      | 0     | 0     | 0       |         |
| Pallas   | 0     | 0      | 0      | 0     | 0     | 0       |         |
| Ceres    | 0     | 0      | 0      | 0     | 0     |         |         |
| Total    | 0     | 0      | 0      | 0     |       | 0       |         |
|          |       |        |        |       |       | 0       |         |
|          |       |        |        |       |       | 0       |         |
| Earthers | Vesta | Hygiea | Pallas | Ceres | Total |         |         |
| Vesta    | 0     | 0      | 0      | 0     | 0     | 0       |         |
| Hygiea   | 0     | 0      | 0      | 0     | 0     | 0       |         |
| Pallas   | 0     | 0      | 0      | 0     | 0     |         |         |
| Ceres    | 0     | 0      | 0      | 0     | 0     | 0       |         |
| Total    | 0     | 0      | 0      | 0     |       | 0       |         |



0

- Tab called Priority 1
  - Notice all the different constraints and inspect formulas

| Constraints: |         |         |          |            |       |                               |
|--------------|---------|---------|----------|------------|-------|-------------------------------|
|              | Deficit | Surplus | Computed | Constraint | Value |                               |
| 0            | 0       | 0       | 0        | =          | 0     | Balance at Vesta              |
| 0            | 0       | 0       | 0        | =          | 0     | Balance at Hygiea             |
| 0            | 0       | 0       | 0        | =          | 0     | Balance at Pallas             |
| 0            | 0       | 0       | 0        | =          | 0     | Balance at Ceres              |
| 0            | 0       | 0       | 0        | =          | 30000 | Total Distance Travelled      |
| 0            | 0       | 0       | 0        | =          | 1364  | Overcrowding at Vesta         |
| 0            | 0       | 0       | 0        | =          | 1136  | Overcrowding at Hygiea        |
| 0            | 0       | 0       | 0        | =          | 1136  | <b>Overcrowding at Pallas</b> |
| 0            | 0       | 0       | 0        | =          | 1364  | Overcrowding at Ceres         |
|              |         |         | 0        | =          | 1000  | Martians at Vesta             |
|              |         |         | 0        | =          | 300   | Earthers at Vesta             |
|              |         |         | 0        | =          | 450   | Martians at Hygiea            |
|              |         |         | 0        | =          | 800   | Earthers at Hygiea            |
|              |         |         | 0        | =          | 1050  | Martians at Pallas            |
|              |         |         | 0        | =          | 400   | Earthers at Pallas            |
|              |         |         | 0        | =          | 500   | Martians at Ceres             |
|              |         |         | 0        | =          | 500   | Earthers at Ceres             |



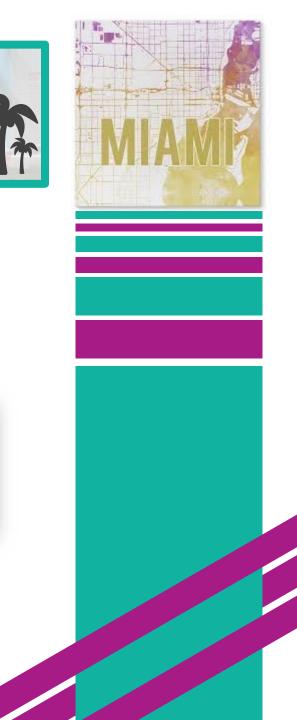
• Tab called Priority 1

41

• First objective function

Minimize  $d_1^- + d_1^+ + d_2^- + d_2^+ + d_3^- + d_3^+ + d_4^- + d_4^+$ 

• Observe formula for objective function


#### 39 **Objective function:**

40 d1^- + d1^+ + d2^- + d2^+ + d3^- + d3^+ + d4^- + d4^+

• Q: What is "B20:C23" referring to and what is "SUM" doing?

**0** =SUM(B20:C23)

• Use Excel solver to find the optimal solution



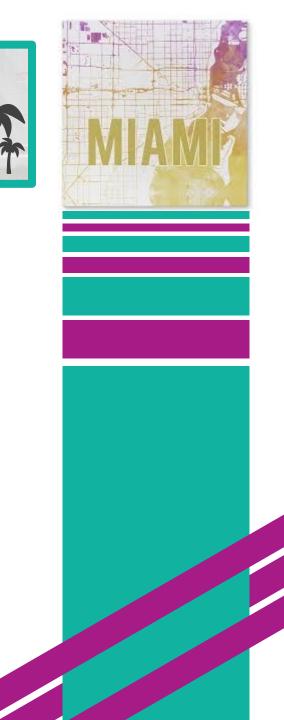
- Tab called Priority 1
  - Optimal solution

| Martians | Vesta | Hygiea | Pallas | Ceres | Total | ] [ |
|----------|-------|--------|--------|-------|-------|-----|
| Vesta    | 461   | 538    | 1      | 0     | 1000  |     |
| Hygiea   | 0     | 140    | 65     | 245   | 450   | H   |
| Pallas   | 0     | 0      | 1050   | 0     | 1050  |     |
| Ceres    | 1     | 0      | 0      | 499   | 500   |     |
| Total    | 462   | 678    | 1116   | 744   |       |     |
|          |       |        |        |       |       |     |
|          |       |        |        |       |       |     |
| Earthers | Vesta | Hygiea | Pallas | Ceres | Total | П   |
| Vesta    | 300   | 0      | 0      | 0     | 300   | П   |
| Hygiea   | 1     | 452    | 344    | 3     | 800   |     |
| Pallas   | 0     | 0      | 400    | 0     | 400   |     |
| Ceres    | 7     | 0      | 0      | 493   | 500   |     |
| Total    | 308   | 452    | 744    | 496   |       |     |

|   | Deficit | Surplus  |
|---|---------|----------|
|   | 0       | 1.71E-13 |
|   | 0       | 0        |
|   | 0       | 0        |
| H | 0       | 0        |
| 1 | 0       | 152      |
| 1 | 594     | 0        |
|   | 6       | 0        |
|   | 0       | 724      |
|   | 124     | 0        |

- Tab called Priority 2
  - Notice the additional constraint and inspect formula

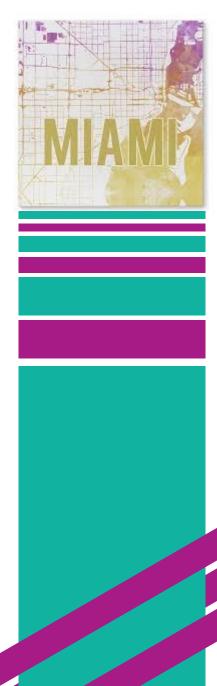
0 **=** 0 First goal optimal


• Second objective function

Minimize  $d_5^+$ 

• Observe formula for objective function

40 Objective function:
 41 d5^+
 42 0 =SUM(C24)


• Use Excel solver to find optimal solution



- Tab called Priority 2
  - Optimal solution

| Martians | Vesta | Hygiea | Pallas | Ceres | Total |
|----------|-------|--------|--------|-------|-------|
| Vesta    | 306   | 442    | 1      | 251   | 1000  |
| Hygiea   | 0     | 223    | 227    | 0     | 450   |
| Pallas   | 0     | 6      | 1044   | 0     | 1050  |
| Ceres    | 0     | 1      | 0      | 499   | 500   |
| Total    | 306   | 672    | 1272   | 750   |       |
|          |       |        |        |       |       |
|          |       |        |        |       |       |
| Earthers | Vesta | Hygiea | Pallas | Ceres | Total |
| Vesta    | 204   | 0      | 96     | 0     | 300   |
| Hygiea   | 0     | 448    | 352    | 0     | 800   |
| Pallas   | 0     | 0      | 400    | 0     | 400   |
| Ceres    | 0     | 0      | 0      | 500   | 500   |
| Total    | 204   | 448    | 848    | 500   |       |

| Deficit | Surplus   |
|---------|-----------|
| 0       | 1.279E-13 |
| 0       | 0         |
| 0       | 0         |
| 0       | 0         |
| 0       | 0         |
| 854     | 0         |
| 16      | 0         |
| 0       | 984       |
| 114     | 0         |

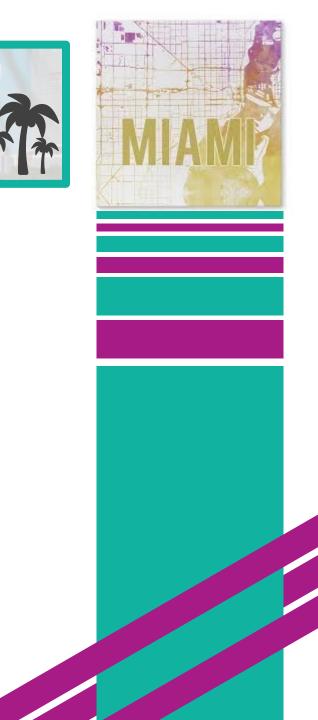


- Tab called Priority 3
  - Notice the additional constraint

| 0 = | 0 | First goal optimal  |
|-----|---|---------------------|
| 0 = | 0 | Second goal optimal |

• Second objective function

Minimize  $d_6^- + d_6^+ + d_7^- + d_7^+ + d_8^- + d_8^+ + d_9^- + d_9^+$ 


• Formula for this objective similar to first objective

 41
 Objective function:

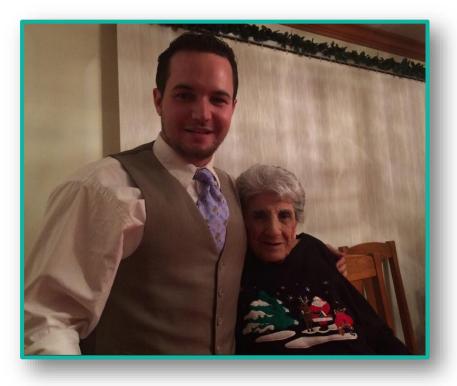
 42
 d6^- + d6^+ + d7^- + d7^+ + d8^- + d8^+ + d9^- + d9^+

 43
 0

• Use Excel solver to find optimal solution



- Tab called Priority 3
  - Optimal solution


| Martians | Vesta     | Hygiea    | Pallas | Ceres | Total |
|----------|-----------|-----------|--------|-------|-------|
| Vesta    | 643.77333 | 37.826667 | 0      | 318.4 | 1000  |
| Hygiea   | 174.62667 | 275.37333 | 0      | 0     | 450   |
| Pallas   | 0         | 368.4     | 681.6  | 0     | 1050  |
| Ceres    | 0         | 0         | 0      | 500   | 500   |
| Total    | 818.4     | 681.6     | 681.6  | 818.4 |       |
|          |           |           |        |       |       |
|          |           |           |        |       |       |
| Earthers | Vesta     | Hygiea    | Pallas | Ceres | Total |
| Vesta    | 254.4     | 0         | 0      | 45.6  | 300   |
| Hygiea   | 0         | 454.4     | 345.6  | 0     | 800   |
| Pallas   | 291.2     | 0         | 108.8  | 0     | 400   |
| Ceres    | 0         | 0         | 0      | 500   | 500   |
| Total    | 545.6     | 454.4     | 454.4  | 545.6 |       |

| Deficit   | Surplus   |
|-----------|-----------|
| 0         | 0         |
| -1.28E-13 | 0         |
| 0         | 1.279E-13 |
| 0         | 0         |
| 0         | 0         |
| 0         | 0         |
| 0         | 0         |
| 0         | 1.421E-13 |
| 0         | 0         |

• Q: What is the problem with the optimal solution?



- Tab called Priority 3
  - Q: What do you mean you cannot move half a person?



• Try to add integer constraints and see what happens









# The End



# Dale