

Lecture 18

Produced by Dr. Worldwide

- Oregon Atlantic Company produces two paper products
 - Newsprint
 - Wrapping paper
- Labor
 - Need 5 minutes per yard of newsprint
 - Need 8 minutes per yard of wrapping paper
 - Company has 4,800 minutes per week
- Profit
 - Make \$0.20 for a yard of newsprint
 - Make \$0.25 for a yard of wrapping paper
- Demand
 - 500 yards of newsprint per week
 - 400 yards of wrapping paper per week

- List of weekly goals
 - Limit overtime to 480 minutes
 - Achieve profit of \$300
 - Fulfill the demand for the products in order of magnitude of their profits
 - Avoid underutilization of production capacity
- Q: Can the Oregon Atlantic Company achieve all their weekly goals?
- Primary decision variables
 - *x* = *number of yards of newsprint*
 - *y* = number of yards of wrapping paper

- Goal 1: Limit overtime to 480 minutes
 - Amount of labor needed in minutes to produce *x* yards of newsprint and *y* yards of wrapping paper

5x + 8y

• Company has 4,800 minutes, but they are okay with 480 extra

 $5x + 8y \le 4800 + 480 = 5280$

• Written as a linear program

Minimize d_1^+ Subject to $5x + 8y + d_1^- - d_1^+ = 5280$

- Goal 2: Achieve profit of \$300 each week
 - Profit from producing x yards of newsprint and y yards of wrapping paper
 0.2x + 0.25y
 - We would like to maintain weekly profit above \$300

 $0.2x + 0.25y \geq 300$

• Written as a linear program

Minimize d_2^-

Subject to $0.2x + 0.25y + d_2^- - d_2^+ = 300$

- Goal 3: Fulfill the demand for newsprint and wrapping paper
 - Based on weekly demands, we want

 $\begin{array}{l} x \geq 500 \\ y \geq 400 \end{array}$

• We want to prioritize fulfilling demands according to their profit

 $\frac{Profit \ of \ newsprint}{Profit \ of \ wrapping \ paper} = \frac{0.2}{0.25} = \frac{20}{25} = \frac{4}{5}$

• Written as a linear program

Minimize $4d_3^- + 5d_4^-$

Subject to
$$x + d_3^- - d_3^+ = 500$$

 $y + d_4^- - d_4^+ = 400$

- Goal 4: Avoid the underutilization of production capacity
 - Remember that company has 4,800 minutes of normal production
 - We would like to use all this production

 $5x + 8y \ge 4800$

• Written as a linear program

Minimize d_5^-

- Subject to $5x + 8y + d_5^- d_5^+ = 4800$
- Class activity
 - Split up class into 4 groups
 - Give each group different ordering of goals according to priority
 - Each group solves goal programming model
 - Compare and discuss the results from the 4 groups

• Division of class

Group IV: Last Initial U-Z Download Sheet 4 Group I: Last Initial A-G Download Sheet 1

Group III: Last Initial O-T Download Sheet 3

Group II: Last Initial H-N Download Sheet 2

• Same set of constraints for all groups

$$5x + 8y + d_{1}^{-} - d_{1}^{+} = 5280$$

$$0.2x + 0.25y + d_{2}^{-} - d_{2}^{+} = 300$$

$$x + d_{3}^{-} - d_{3}^{+} = 500$$

$$y + d_{4}^{-} - d_{4}^{+} = 400$$

$$5x + 8y + d_{5}^{-} - d_{5}^{+} = 4800$$

$$x, y, d_{i}^{-}, d_{i}^{+} \ge 0$$

- Recall the objectives for minimization
 - d_1^+ (Limit Overtime)
 - d_2^- (Achieve Profit)
 - $4d_3^- + 5d_4^-$ • d_5^-

(Fulfill Demand) (Avoid Underutilization of Labor)

- Different groups are different branches of the same company
 - Group 1 is okay with employees working overtime to ensure that they achieve their profit
 - Group 2 cares most about profit and fulfilling demand and least about the utilization of labor
 - Group 3 cares most about fulfilling the demands of their customers and least about reaching the desired profit
 - Group 4 cares most about making sure their employees reach the desired regular production capacity and the ideal overtime scenario

• Division of priorities

Group I **Group IV** $\begin{array}{c} d_5^- \\ d_1^+ \\ d_2^- \end{array}$ $d_1^+ \\ d_2^-$ Priority 1 Priority 1 Priority 2 Priority 2 $4d_3^- + 5d_4^-$ Priority 3 Priority 3 $4d_3^- + 5d_4^$ d_5^- Priority 4 Priority 4 Group III Group II $4d_3^- + 5d_4^-$ Priority 1 Priority 1 $d_2^$ $d_5^ d_1^+$ $d_2^ 4d_3^- + 5d_4^ d_5^ d_1^+$ Priority 2 Priority 2 Priority 3 **Priority 3** Priority 4 Priority 4

Goal Programming in Excel

- Instructions for solving goal programming problem in Excel
 - Top priority objective has been optimized (see tab Priority 1)
 - Almost all groups have different initial solutions (Group I and IV identical)
 - Copy sheet Priority 1 and rename Priority 2 (right click on tab)

1 d4^+	C	Move or Copy ? X	
2 d5^- 3 d5^+	Delete C	Move selected sheets To book:	
4 5 Ohi fur	Move or Copy.	OregonAtlantic-1.xlsx	
.5 0.6j. rui	View Code Protect Sheet	(move to end) Priority 1 (2)	
.7 .8	<u>T</u> ab Color > <u>H</u> ide		
.9	Unhide	✓ <u>C</u> reate a copy	
O ← Priori	Select All Sheets	OK Cancel	

Goal Programming in Excel

- Instructions for solving goal programming problem
 - Create new constraint in tab Priority 2 based on previous results for Priority 1

Cut 500 Copy 347.5 Paste Options 0 _ Ĥ Paste Special 113.125 Insert Delete Clear Contents Set value equal to Format Cells... 52.5 Row Height... previous minimization 0 Hide 0 Unhide 23 d5^+ 480 24 Formula with MMULT 0 25 Obj. function d1^d1^+ d2^d5^d5^+ d2^+ d3^d3^+ d4^d4^+ 5 Constraints: Constraint Valu 5280 6 Labor overtime 8 1 -1 0 0 0 0 0 0 5280 = 0 0 7 Profit 0.25 0 0 -1 0 0 0 0 0 300 = 300 1 8 Demand x 500 0 0 0 0 -1 0 0 0 500 =0 0 0 0 400 = 400 9 Demand v 0 0 0 1 -1 0 10 Labor undert 5 0 0 0 0 0 0 0 1 4800 = 4800 11 Priority 1 #VALUE! =

• Recall your group's objectives in order of priority

Group IV	Group I				
Priority 1 d_5^- Priority 2 d_1^+ Priority 3 d_2^- Priority 4 $4d_3^- + 5d_4^-$	Priority 1 d_1^+ Priority 2 d_2^- Priority 3 $4d_3^- + 5d_4^-$ Priority 4 d_5^-				
Group IIIPriority 1 $4d_3^- + 5d_4^-$ Priority 2 d_5^- Priority 3 d_1^+ Priority 4 d_2^-	Group IIPriority 1 d_2^- Priority 2 $4d_3^- + 5d_4^-$ Priority 3 d_5^- Priority 4 d_1^+				

• We want to fill in the following table

Decision Variables	x	у	d_1^-	d_1^+	d_2^-	d_2^+	d_3^-	d_3^+	d_4^-	d_4^+	d_5^-	d_5^+
Group I												
Group II												
Group III												
Group IV												

The End

Dale