

Lecture 2 T

Produced by Dr. Worldwide

Excel: Break-Even

- Download BreakEven.xlsx from website link called Sheet 1
- Enter fixed cost (c_f) , variable cost (c_v) , and price (p)
- Excel formula used to find break-even point ($x^* = \frac{c_f}{p-c_p}$)

	А	В
1	Break-even problem	
2		
3	Fixed cost (cf)	10000
4		
5	Variable cost (cv)	8
6		
7	Price (p)	23
8		
9	Break-even point:	666.666667

Excel: Break-Even

- Use of Excel QM software for break-even analysis
- Begin by opening Excel QM software from computer shortcut
- Select Excel QM tab and select Alphabetical

- In drop down menu, select Break-even Analysis and then Breakeven (Cost vs Revenue)
- Enter name of report, sheet title, and insert checkmark for graph

Excel: Break-Even

Hello **Breakeven Analysis** Cost vs. Revenue Enter the fixed and variable costs and the selling price in the data area. You may enter a volume at which to perform a volume analysis. Data 35000 30000 Option 1 25000 Fixed cost 10000 20000 15000 Variable cost 8 10000 Revenue 23 5000 200 400 Costs Results **Breakeven points** Units 666.6666667 Dollars \$ 15,333.33

-Revenue

- Beaver Creek Pottery produces the hottest clay bowls and mugs
 - Bowls require 1 hr. of labor and 4 lbs. of clay
 - Mugs require 2 hrs. of labor and 3 lbs. of clay
- Daily Limitations of resources
 - 40 hrs. of labor
 - 120 lbs. of clay
- Profit
 - Bowls return profit of \$40
 - Mugs return profit of \$50
- Q: What number of clay bowls and mugs should the company make each day to maximize daily profit?

Linear Programming

- Linear programming is the process of optimizing a linear objective function subject to linear constraints.
- Seven steps of linear programming
 - Define the decision variables
 - Define the linear objective function
 - Use linear inequalities to define constraints
 - Graph resulting system of inequalities (use lines and shading)
 - Find the corners of the region
 - Substitute the coordinates of each corner into the objective function
 - Select the appropriate result based on when the objective function is optimized (either maximized or mininized) and interpret

- Decision variables
 - *x* = *Number of Bowls to Produce in* 1 *Day*
 - *y* = *Number of Mugs to Produce in 1 Day*
- Objective function
 - We seek to maximize profit
 - f(x, y) = Z = 40x + 50y

- Constraints
 - $x + 2y \le 40$ (labor hours)
 - $4x + 3y \le 120$ (pounds of clay)
 - $x \ge 0$ (nonnegativity)
 - $y \ge 0$ (nonnegativity
- Feasible region
 - Constraints lie on a two-dimensional plane
 - The feasible region is the set of all (x, y) points where none of the constraints are violated
 - The set $\{(x, y): x + 2y \le 40 \cap 4x + 3y \le 120 \cap x \ge 0 \cap y \ge 0\}$
 - Helpful to get constraints in form comfortable for plotting

Constraints in Slope-Intercept Form

$$x + 2y \le 40 \rightarrow y \le 20 - \frac{1}{2}x$$
 & $4x + 3y \le 120 \rightarrow y \le 40 - \frac{4}{3}x$

Linear Program

Maximize	Z = 40x + 50y
Subject to	$x + 2y \le 40$
	$4x + 3y \le 120$
	$x \ge 0$
	$y \ge 0$

- Plotting the feasible region
 - Based on nonnegativity constraints, the feasible region exists somewhere in the positive quadrant
 - Plot inequalities as if they were equalities
 - Shade according to the inequality symbol (check if the origin satisfies the inequality or not
 - The feasible region is the intersection of the shaded areas

Constraints in Slope-Intercept Form

$$y \le 20 - \frac{1}{2}x$$

$$y \le 40 - \frac{4}{3}x$$

$$x \ge 0 \text{ (vertical line)}$$

$$y \ge 0 \text{ (horizontal line)}$$

• Plotting the feasible region (Continued)

- Find the corners of the feasible region
 - Origin: (0,0)
 - Intercepts: (0,20) & (30,0)
 - Intersection Point: (24,8)

$$y = 20 - \frac{1}{2}x = 40 - \frac{4}{3}x = y$$
$$-\frac{1}{2}x + \frac{4}{3}x = 20$$
$$\frac{5}{6}x = 20$$
$$x = 24$$

When x=24,

$$y = 20 - \frac{1}{2} * 24 = 8$$

- Find the corners of the feasible region (Continued)
 - Optimal choice of decision variables is one of the corner points around feasible region
 - Plug into objective function

Corner Points and Profit

 $(0,0) \rightarrow 40(0) + 50(0) = \0 $(0,20) \rightarrow 40(0) + 50(20) = \1000 $(30,0) \rightarrow 40(30) + 50(0) = \1200 $(24,8) \rightarrow 40(24) + 50(8) = \1360

- Find optimal solution and interpret
 - Ideally, we want to produce 24 bowls and 8 mugs
 - This decision will lead to a maximum profit of \$1360

- Another creative look at finding the optimal solution
 - Recall the objective function: Z = 40x + 50y

40

х

- Another creative look at finding the optimal solution (Continued)
 - Objective function grows in the direction of the vector (40,50)
 - Lines that are perpendicular to this vector are level curves
 - In a maximization problem, the optimal solution will be the point in the feasible region farthest in the direction of growth

Using Desmos

- Use Link Provided on Course Website for Online Graphing Calculator
- Start with a Blank Coordinate Plane and Zoom Out as Necessary

desmos Untitled Graph Log In or Sign Up 🔂 ? $\mathbf{r} \rightarrow$ \$ ≪ +···· 🔺

Using Desmos

• Type Inequalities for Constraints in the Left Panel

Using Desmos

• Darkest Region Represents the Feasible Region

- Points of Intersection Can Be Easily Selected
- Need to Use a Screen Shot to Capture Image to Save on Your Computer

The End

Dale