

Lecture 20T

Produced by Dr. Worldwide

Solving in Excel

- Algorithms for solving nonlinear programming models can be very complex
- Most algorithms can only guarantee that they find a local optimizer rather than a global one
- Excel Solver uses an algorithm called Generalized Reduced Gradient (GRG) to solve nonlinear problems
- This algorithm is designed to find a local optimizer within a certain "tolerance" level, and it can sometimes get "stuck"
- In problems not guaranteed to have a unique interior optimal solution, it is a good idea to run the GRG algorithm starting at several initial points

Solving in Excel

- Download NonlinearProfit.xlsx from link Sheet 1 on course website
 - Inspect the spreadsheet and Solver С В D А Maximizing nonlinear profit 1 2 Profit: 7259.45366 3 Variable (p): 34.4878049 4 Constraint 34.4878049 <= 5 40 =1696.8*B4-24.6*B4^2-22000
- Solution is for price ceiling of \$40

•

Se <u>t</u> Objective:		\$B\$3		<u>↑</u>
Го: <u>М</u> ах	() Mi <u>n</u>	O <u>V</u> alue Of:	0	
<u>3</u> y Changing Variable Ce	lls:			
\$B\$4				1
Subject to the Constraint	s:			
\$B\$5 <= \$D\$5			^	Add
				<u>C</u> hange
				<u>D</u> elete
				<u>R</u> eset All
				Load/Save
✓ Ma <u>k</u> e Unconstrained	Variables Non-N	egative		
S <u>e</u> lect a Solving Method:	GRG Nonlinear		~	Options
Solving Method				
Select the GRG Nonline	ar engine for Solv	er Problems that are sm	ooth nonlinear. Select th	ne LP Simplex engine

Solving in Excel

- O: What happens if you adjust the price ceiling to \$20?
- Q: Is your answer consistent with what we have previously seen?

• Q: What happens if you completely drop the constraint?

- This company makes and sells clay bowls and clay mugs
- Model profit as a nonlinear function for maximization
- Examine the following relationships for the profit for bowls (x) and mugs (y) Profit per Bowl = 4 - 0.1xProfit per Mug = 5 - 0.2y
- Assume that there is only one constraint pertaining to labor x + 2y = 40
- New optimization problem

Maximize(4 - 0.1x)x + (5 - 0.2y)ySubject tox + 2y = 40 $x, y \ge 0$

- Download BeaverCreekNonlinear.xlsx from link Sheet 2 on course website
- Inspect the spreadsheet and the nonlinear objective function

	А	В	С	D	E	F	
1	Beaver Cree	k Pottery Con	npany (nonlir	near)			
2							
3	Variables:						
4	Bowls (x)	0					
5	Mugs (y)	0					
6							
7	Profit:	0	=(4-0.1*B4)*	B4+(5-0.2*B5)*	[•] B5		
8							
9	Constraint	Х	У	Used	Constraint	Allowed	
10	Labor	1	2	0	=		40

- Run Excel Solver using algorithm Simplex LP and observe what happens
- Run Excel Solver using GRG Nonlinear and select the sensitivity report

S <u>e</u> lect a Solving Method [.]	GRG Nonlinear	Solver Results
Method.		Solver found a solution. All Constraints and optimality conditions are satisfied. Meep Solver Solution Mestore Original Values <l< th=""></l<>
		Solver found a solution. All Constraints and optimality conditions are satisfied. When the GRG engine is used, Solver has found at least a local optimal solution. When Simplex LP is used, this means Solver has found a global optimal solution.

- Solution is to produce 18.3 bowls and 10.8 mugs for a profit of \$70.42
- Inspect the sensitivity report

Va	ariable	Cells		
			Final	Reduced
	Cell	Name	Value	Gradient
	\$B\$4	Bowls (x)	18.33333327	0
	\$B\$5	Mugs (y)	10.83333337	0
Сс	onstrair	nts		
			Final	Lagrange
	Cell	Name	Value	Multiplier
	\$D\$10	Labor Used	40	0.333332151

• The Lagrange multiplier is analogous to the shadow price from before

- Company produces two types of jeans
 - Designer
 - Straight-leg
- Demand for designer jeans (x_1) and demand for straight-leg jeans (x_2) are functions of the corresponding prices, and follow the relations:

 $\begin{array}{l} x_1 = 1500 - 24.6p_1 \\ x_2 = 2700 - 63.8p_2 \end{array}$

- Designer jeans cost \$12 per pair and straight-leg jeans cost \$9 per pair
- Each pair of jeans requires the following:

	Cloth (yd)	Cutting time (min)	Sewing time (min)
Designer	2	3.6	7.2
Straight-leg	2.7	2.9	8.5

- Company has the following capacities
 - 6,000 yards of cloth
 - 8,500 minutes of cutting time
 - 15,000 minutes of sewing time
- Decision variables
 - x_1 = Number of designer jeans to produce
 - x_2 = Number of straight leg jeans to produce
- Objective function for profit (revenue-cost)

 $Z = (p_1 x_1 + p_2 x_2) - (12x_1 + 9x_2) = (p_1 - 12)x_1 + (p_2 - 9)x_2$

• Goal is to find out how many jeans to produce so we need to use the relationships between the price and the number of each type to produce

• Updated objective function for profit

$$Z = (p_1 - 12)x_1 + (p_2 - 9)x_2$$

= $\left(\frac{1500 - x_1}{24.6} - 12\right)x_1 + \left(\frac{2700 - x_2}{63.8} - 9\right)x_2$

• Constraints based on limited resources

 $\begin{array}{ll} 2x_1 + 2.7x_2 \leq 6,000 & ({\rm Cloth}) \\ 3.6x_1 + 2.9x_2 \leq 8,500 & ({\rm Cutting\,Time}) \\ 7.2x_1 + 8.5x_2 \leq 15,000 & ({\rm Sewing\,Time}) \end{array}$

- Nonnegativity constraints $x_1 \ge 0$ and integer (if possible) $x_2 \ge 0$ and integer (if possible)
- Download WesternClothing.xlsx from link Sheet 3 on course website

• Run Excel Solver

Va	Variable Cells				
			Final	Reduced	
	Cell	Name	Value	Gradient	
	\$B\$4	Designer jeans (x1)	602.3995467	0	
	\$B\$5	Straight-leg jeans (x2)	1062.900112	0	
С	onstraii	nts			
			Final	Lagrange	
	Call	Nama	Value	Multiplies	

• Add integer constraints and run Excel Solver (Sensitivity not available)

Ex: Facility Location

- Clayton County Rescue Squad and Ambulance Service wants to build a centralized facility to service five rural towns
 - Abbeville
 - Benton
 - Clayton
 - Dunning
 - Eden
- Let (x, y) denote the location of the proposed facility
- Let (x_i, y_i) denote the location of town i
- Distance between the proposed facility and a town *i*

 $d_i = \sqrt{(x_i - x)^2 + (y_i - y)^2}$

Ex: Facility Location

• Town locations and number of annual trips are given below

	Coordinates		
Town	x_i	y_i	Annual trips (t_i)
Abbeville	20	20	75
Benton	10	35	105
Clayton	25	9	135
Dunning	32	15	60
Eden	10	8	90

- Two ideas to consider
 - The facility should be placed closed to the center of all these towns
 - The facility should be placed closed to towns that are visited more often

Ex: Facility Location

- Q: In which location should we place the facility that minimizes the distance to each of the towns, prioritizing those that are visited more often?
- Nonlinear program (Unconstrained or constrained)

Minimize

$$\sum d_i t_i = \sum t_i \sqrt{(x_i - x)^2 + (y_i - y)^2}$$

Subject to

$$x, y \ge 0$$
 Is this necessary?

- Download FacilityLocation.xlsx from link Sheet 4 on course website
- Run Excel Solver both with and without positive constraint
- Q: Did going from constrained to unconstrained get you an error?

The End

Dale