

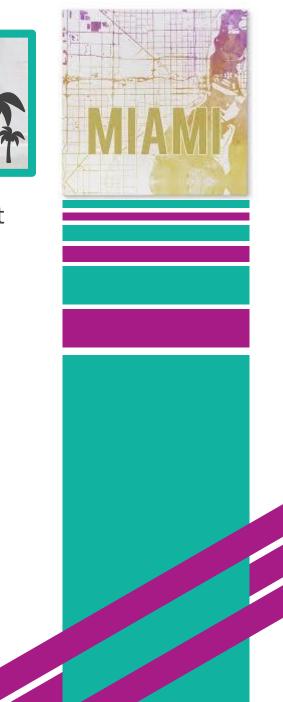
Lecture 21T

Produced by Dr. Worldwide

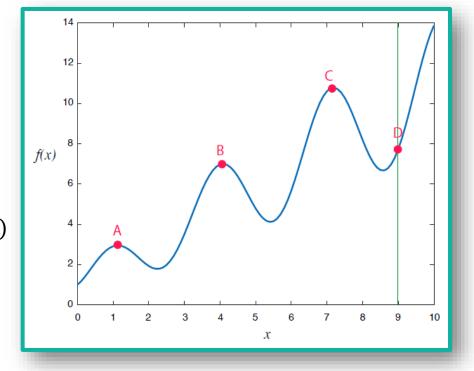
- When solving non-linear problems, it is important to consider the possibility that there may be multiple local solutions (maxima/minima)
- There is no method that guarantees we find all such points
- In problems not guaranteed to have a unique interior optimal solution, it is a good idea to run the GRG algorithm starting at several initial points
- Consider the following nonlinear problem

Maximize $f(x) = 1 + x + \sqrt{x} \sin(2x)$

Subject to $0 \le x \le 9$



- Consider the graph $f(x) = 1 + x + \sqrt{x} \sin(2x)$
- Four different local maxima
- Q: What is the answer to our problem? Maximize $f(x) = 1 + x + \sqrt{x} \sin(2x)$ Subject to $0 \le x \le 9$



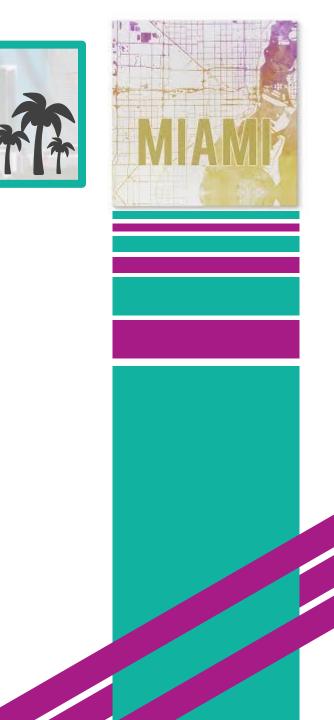
- Download MultipleMaxima.xlsx from link Sheet 1 on course website
- Consider the following part of the spreadsheet

27 0 1	26	Starting Value	Objective Function
	27	0	1

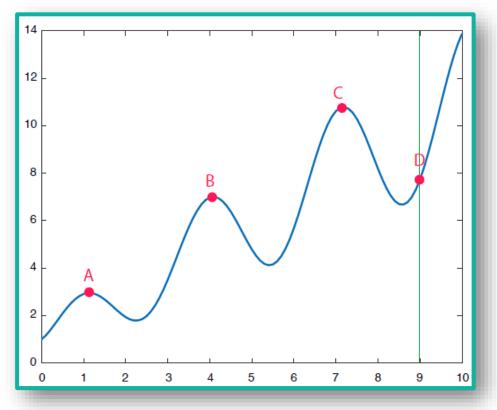
• Run solver with four different starting values

x = 0, x = 4, x = 8, x = 9

• Q: Do all four starting values lead to the same solution?

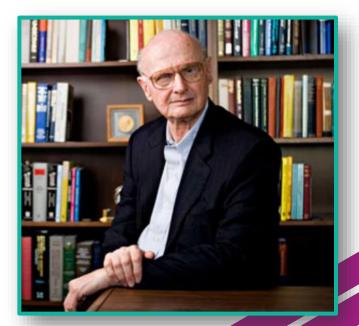


- Optimal solution under all initial values
- Q: Do the answers make sense?

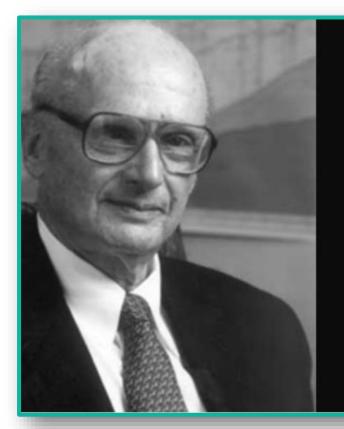


Starting Values	Optimal Solution	Maxima
0	1.13	2.95
4	4.08	7.01
8	7.18	10.79
9	9	7.75

- An investor can choose among *n* different investment opportunities
- An investment portfolio is a selection of how much to invest in each option
- Popular model for portfolios is the Markowitz model
 - Minimize risk (variance of the portfolio)
 - Maximize return on investment
- Different investments are assumed to be correlated
 - Positively correlated
 - Negatively correlated
- Diversification protects against these correlations



• Dope quote from Harry Markowitz



A good portfolio is more than a long list of good stocks and bonds. It is a balanced whole, providing the investor with protections and opportunities with respect to a wide range of contingencies.

— Harry Markowitz —

AZQUOTES

- Let x_i denote the proportion of money invested in option $i \in \{1, 2, \dots, n\}$
- Let σ_i^2 denote the variance of investment option $i \in \{1, 2, \dots, n\}$
- Let ρ_{ij} denote the correlation between investment option i ∈ {1,2,...,n} and investment option j ∈ {1,2,...,n} where i ≠ j

• The variance of the portfolio is given by

$$S = x_1^2 \sigma_1^2 + x_2^2 \sigma_2^2 + \dots + x_n^2 \sigma_n^2 + \sum_{i=1}^n \sum_{1 \le j \le n, j \ne i} x_i x_j \rho_{ij} \sigma_i \sigma_j$$

$$= (x_1, x_2, \dots, x_n) \begin{bmatrix} \sigma_1^2 & \rho_{12} \sigma_1 \sigma_2 & \dots & \rho_{1n} \sigma_1 \sigma_n \\ \rho_{21} \sigma_2 \sigma_1 & \sigma_2^2 & \dots & \rho_{2n} \sigma_2 \sigma_n \\ \vdots & \vdots & \dots & \vdots \\ \rho_{n1} \sigma_n \sigma_1 & \rho_{n2} \sigma_n \sigma_2 & \dots & \sigma_n^2 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

- Let r_i denote the expected return on investment of option $i \in \{1, 2, \dots, n\}$
- Expected return on investment from the portfolio is given by

$$R = r_1 x_1 + r_2 x_2 + \dots + r_n x_n = (r_1, r_2, \dots, r_n) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

- Vector/Matrix notation
 - $\mathbf{x}' = [x_1, x_2, \cdots, x_n]$ • $\mathbf{r}' = [r_1, r_2, \cdots, r_n]$

(Vector of decision variables of portfolio) (Vector of expected returns)

•
$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 & \dots & \rho_{1n}\sigma_1\sigma_n \\ \rho_{21}\sigma_2\sigma_1 & \sigma_2^2 & \dots & \rho_{2n}\sigma_2\sigma_n \\ \vdots & \vdots & \dots & \vdots \\ \rho_{n1}\sigma_n\sigma_1 & \rho_{n2}\sigma_n\sigma_2 & \dots & \sigma_n^2 \end{bmatrix}$$

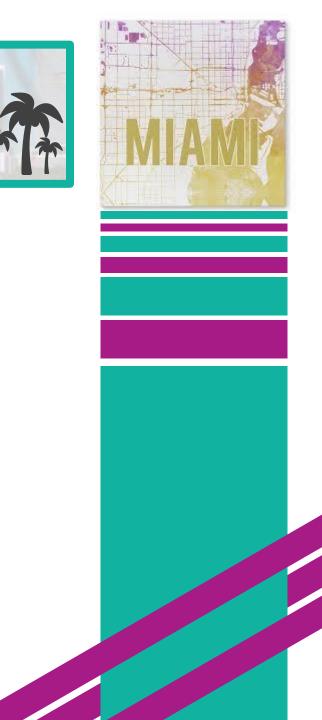
(Variance/covariance matrix)

• The nonlinear program we desire to solve

Minimize $x' \Sigma x$

Subject to $\begin{array}{ll} \pmb{r'x} \geq r_m \\ x_1 + x_2 + \dots + x_n = 1 \\ x_i \geq 0 \end{array}$

- Objective function is nonlinear and quadratic
- Q: What are the units of the different values x_1, x_2, \dots, x_n ?
- Q: What does r_m represent in this linear program?

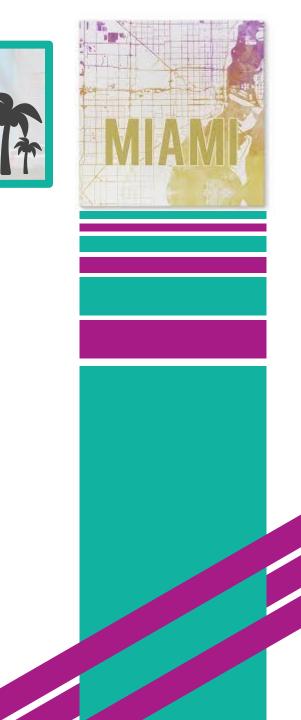


• Suppose an investor wants to build a portfolio from the following stocks:

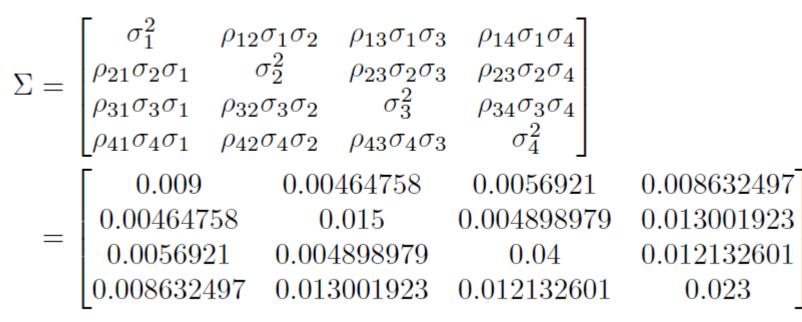
Stock (x_i)	Annual return (r_i)	Variance
1. Altacam	.08	.009
2. Bestco	.09	.015
3. Com.com	.16	.040
4. Delphi	.12	.023

• Consider the correlation matrix of the stocks

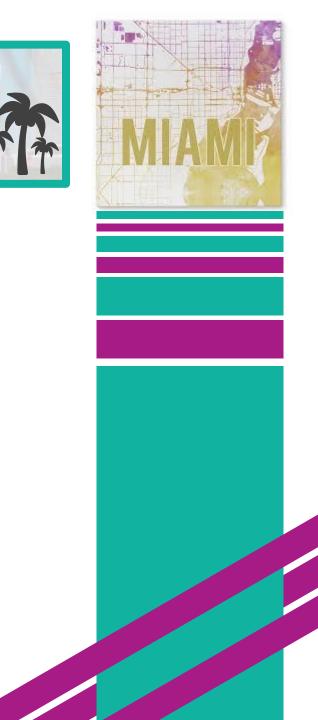
$$\begin{bmatrix} 1 & \rho_{12} & \rho_{13} & \rho_{14} \\ \rho_{21} & 1 & \rho_{23} & \rho_{24} \\ \rho_{31} & \rho_{32} & 1 & \rho_{34} \\ \rho_{41} & \rho_{42} & \rho_{43} & 1 \end{bmatrix} = \begin{bmatrix} 1 & .4 & .3 & .6 \\ .4 & 1 & .2 & .7 \\ .3 & .2 & 1 & .4 \\ .6 & .7 & .4 & 1 \end{bmatrix}$$



• The covariance matrix can be computed as follows:



- The investor wants a total annual return of at least 0.11 (11%)
- Download Markowitz.xlsx from link Sheet 2 on course website



• Notice the formula for the objective function

21	Computing the portfolio variance:	
22	x'*Sigma*x =	0
23		
24	Portfolio variance:	0

- Try the alternative approach
 - = MMULT(TRANSPOSE(B4:B7),MMULT(A16:D19,B4:B7))
- Examine what the constraints look like in Solver

```
Subject to the Constraints:
$B$25 >= 0.11
$B$26 = 1
```

= SUMPRODUCT(B4:B7,MMULT(A16:D19,B4:B7))



The End

Dale