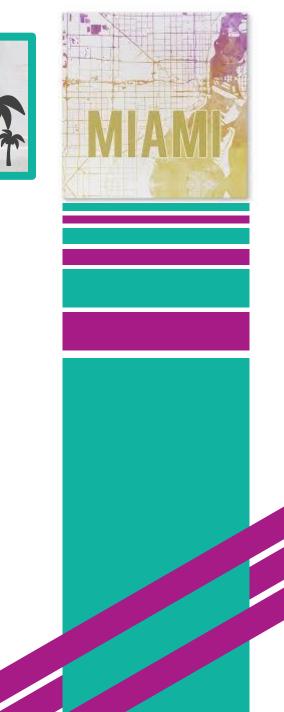

Lecture 22T

Produced by Dr. Worldwide

- State has increased its tuition for all students in each of the last 5 years
- University administration always thought the number of applications received was independent of tuition
- Drops in applications and enrollment prove this idea to be wrong
- University admissions officials developed the following relationships between the number of applicants (*x_i*) and cost of tuition (*t_i*)

$x_1 = 21000 - 12t_1$	(Relationship for in-state applicants)
$x_2 = 35000 - 6t_2$	(Relationship for out-of-state applicants)


• University desires to develop a planning model to indicate the in-state and outof-state tuitions, as well as, the number of students that could be expected to enroll in the freshman class

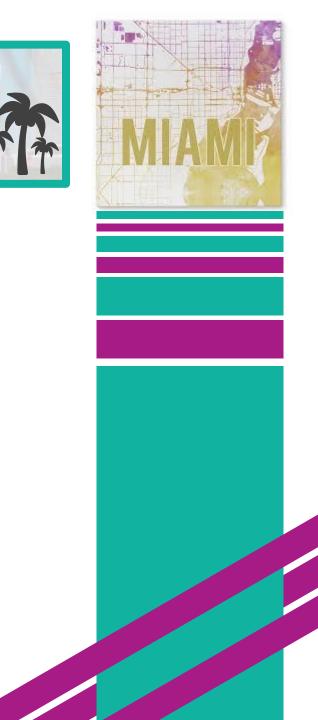
- Constraints based on resources
 - Not enough classroom space for more than 1,400 students
 - Needs at least 700 freshmen to meet all its class size objectives
 - At most 800 dorm rooms available for freshmen
- Historical expectations
 - 55% of all in-state freshmen desire to live in dorms
 - 72% of all out-of-state freshmen desire to live in dorms
- Uphold the academic standards of the institution
 - Average SAT is 960 for in-state students
 - Average SAT is 1150 for out-of-state students
 - University wants the entering freshmen to average 1,000

- Legislative requirements
 - State is supported by the state LOL $\textcircled{\odot}$
 - The legislature wants to make sure that State doesn't just admit out-ofstate students because they pay more money or have better SAT scores
 - Policy that no more than 55% of the entering freshman can be out-of-state students
- Q: How much should State charge, what would the total tuition be, and how many in-state and out-of-state students should they expect?
- Decision variables
 - We have a choice between x_1 and x_2 or t_1 and t_2
 - Related through the following equations

 $\begin{array}{l} x_1 = 21000 - 12t_1 \\ x_2 = 35000 - 6t_2 \end{array}$

- Objective function
 - Goal is to maximize the revenue in tuition
 - Total tuition based off in-state and out-of-state students

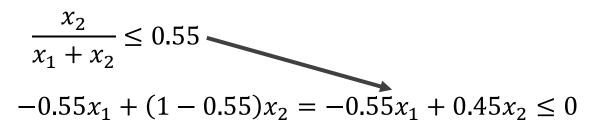
$$x_1t_1 + x_2t_2 = x_1 \times \frac{(21000 - x_1)}{12} + x_2 \times \frac{(35000 - x_2)}{6}$$

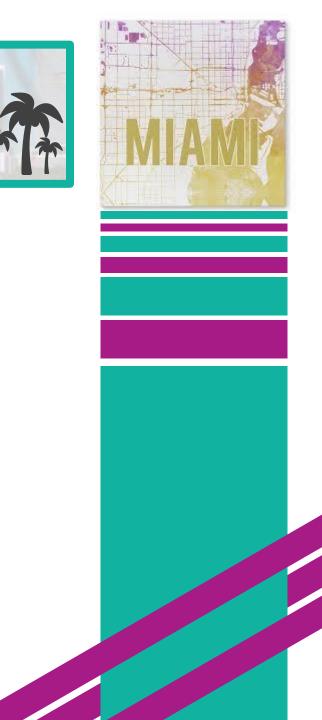

- Constraints
 - Maximum number of freshmen

 $x_1 + x_2 \leq 1400$

• Minimum number of freshmen

 $x_1 + x_2 \ge 700$


• Maximum number of dormitories $0.55x_1 + 0.72x_2 \le 800$

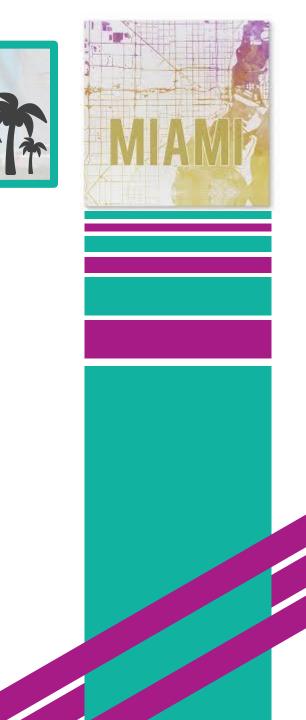


- Constraints
 - Average SAT Scores

 $\frac{960x_1 + 1150x_2}{x_1 + x_2} \ge 1000$ (960 - 1000)x_1 + (1150 - 1000)x_2 = -40x_1 + 150x_2 \ge 0

• Maximum for out-of-state students

• Nonlinear program

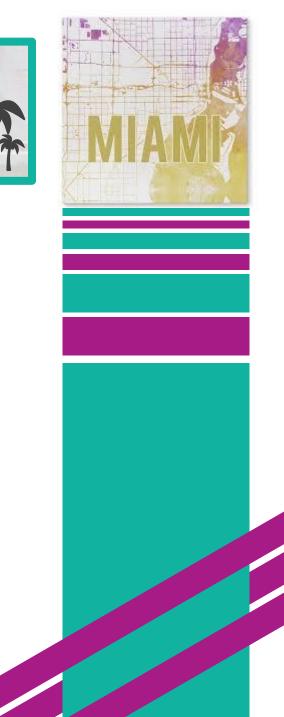

Maximize

$$x_1 \times \frac{(21000 - x_1)}{12} + x_2 \times \frac{(35000 - x_2)}{6}$$

Subject to

 $x_{1} + x_{2} \le 1400$ $-x_{1} - x_{2} \le -700$ $0.55x_{1} + 0.72x_{2} \le 800$ $40x_{1} - 150x_{2} \le 0$ $-0.55x_{1} + 0.45x_{2} \le 0$ $x_{1}, x_{2} \ge 0$

• Download Admissions.xlsx from link Sheet 1 on course website



- Use Excel to find the optimal solution is $x_1 = 559.44$ and $x_2 = 683.76$
- Consequently, we find the optimal tuition for in-state and out-of-state students

$$t_1 = \frac{21000 - x_1}{12} = \frac{21000 - 559.44}{12} = \$1,703.38$$

$$t_2 = \frac{35000 - x_2}{6} = \frac{35000 - 683.76}{6} = \$5,719.37$$

• Expected total tuition from freshmen is $x_1t_1 + x_2t_2 =$ \$4,863,622.37

• Solve again in Excel and save sensitivity report

Constraints			
		Final	Lagrange
Cell	Name	Value	Multiplier
\$D\$5	Max. students Computed	1243.201243	0
\$D\$6	Min. students Computed	-1243.201243	0
\$D\$7	Dormitory capacity Computed	800	5949.524432
\$D\$8	SAT average Computed	-80186.48019	0
\$D\$9	Max. out-of-state Computed	0	2937.233899

• Q: What does it mean that when the Lagrange multiplier is 0?

The End

Dale