

Lecture 25T

Produced by Dr. Worldwide

- Current methods are appropriate for univariate data
- Bivariate data contains observations from a pair of variables
- For bivariate data, the focus shifts to understanding the relationship between the two variables
- Descriptive statistics for bivariate data
 - Scatterplot
 - Covariance
 - Correlation
- Since the most widely used method for modeling relationships is linear regression, the scatterplot is often use to inspect if a linear relationship exists

- Q: What kind of relationship exists between the outcomes of the two dice?
- Q: What kind of relationship exists between the outcome of the second die and the sum of the two dice?
- Download SumDice-2.xlsx from link Sheet 1 on course website
- In Excel, create a scatterplot by using the Insert menu
- Optionally, use Recommended Charts to help you select Scatter
- Examine plots in tab named "50" and "100" for examples
- Investigate the plots to determine if your hypotheses were true

• Plots based on 100 observations from the population

• Q: How would we quantify the difference between these relationships?

- The sample correlation coefficient measures the strength of linear relationship between two variables on a scale between -1 and +1
 - Close to 1 implies strong positive correlation
 - Close to -1 implies strong negative correlation
 - Close to o indicates no correlation
 - Formula

- Calculation of correlation using CORREL(variable 1, variable 2)
 - When n=50

Sample correlation (W,X)	0.675188473
Sample correlation (Y,W)	-0.110785404

• When n=100

Sample correlation (W,X)0.73263405Sample correlation (Y,W)0.06826615

• When n=200

Sample correlation (W,X)	0.67376759
Sample correlation (Y,W)	- <mark>0.053052</mark> 5

- Previous statistic is often called Pearson's correlation coefficient
- Assumptions for Pearson's correlation coefficient
 - Both variables are normally distributed (approximately bell-shaped)
 - Relationship can be expressed by a line
 - Data is equally distributed around the best-fitted line
- Spearman's correlation coefficient is the nonparametric version of the latter and evaluates the monotonic relationship between the ranked values
- Monotonic implies that variables change together but not at a constant rate
- Both correlation coefficients are between -1 and 1

• Visual difference between Pearson and Spearman

- Advantage of Spearman's is that it can be applied to discrete numeric and ordinal categorical data
- Formulation is based on ranking the observations for each of the variables and computing the Pearson correlation coefficient for the ranks
- When ranking, we handle ties by computing the average =RANK.AVG(observation, variable, o=descending)
- Evaluation of Spearman's correlation coefficient
 =CORREL(RANK.AVG(variable 1),RANK.AVG(variable 2))

- Calculation of Spearman's correlation in tab named "Rank"
 - Create variables for first die roll, second die roll, and sum of dice

Name Manager					?	×
<u>N</u> ew	<u>E</u> dit	<u>D</u> ele	te		<u>F</u> ilter	•
Name	Value		Refers	То	Scope	(
List1	{"6";"2";"2";"3"	;"1";"5";"	=Rank	(!\$A\$4:\$A\$103	Workbo	ook
Eist2	{"4";"3";"6";"2", {"10";"5";"8";"5	;"4";"4";" 5";"5";"9";	=Rank =Rank	k!\$B\$4:\$B\$103 k!\$C\$4:\$C\$103	Workbo Workbo	ook ook
<						>
<u>R</u> efers to:						
=Rank!\$A\$4	:\$A\$103					<u>↑</u>
					Clos	se

- Create columns of ranks using RANK.AVG
- Use CORREL function on ranked columns

Spearman's Correlation (W,X)	0.730623	
Spearman's Correlation (Y,W)	0.070636	

PivotTables

- The PivotTable is a powerful tool to calculate, summarize, and analyze data
- The purpose is to organize and summarize the data in a way that can be used to answer questions or visualize patterns
- Two tutorials provided on the course website
 - Tutorial from Excel Easy is found in Link 1 on course website
 - Tutorial from Microsoft Support is found in Link 2 on course website
- Many YouTube videos in addition to these two tutorials
- Companies use Excel's PivotTables as their main tool for summarizing data making competency in this area extremely marketable

- Download CancerResearch.xlsx from link Sheet 2 on course website
- Results form a PubMed search on the topic "Non-small lung cancer"
- Dataset contains 10 fields
 - Article ID number (*pmid*)
 - Year of publication (year)
 - Month of publication (*month*)
 - Day of publication (*day*)
 - Journal ID number (*journ_id*)
 - Journal title (*journ_name*)
 - Article title (*title*)
 - Article abstract (*abstract*)
 - Author's affiliations (*aff*)
 - Number of authors (*num_auth*)

- Select all data: Select cell A1 (top-left) and use the shortcut Ctrl+Shift+Down+Right to automatically select all the data
- When selecting the data include column names in selection
- Go to Insert menu to find PivotTable in the far left
- By default, this operation will generate a new tab
- Menu bar is used to customize the PivotTable

PivotTable Fields		•	×	
Choose fields to add to report	*	4	→ {§	
Search			Q	
pmid vear				
month				
☐ journ_id ☐ journ name				
☐ title ☐ abstract ☐ aff				
num_auth				
More Tables			•	
Drag fields between areas bel	DW:			
T Filters	III Columns			
Rows	Σ Values			

- Aspects of the menu bar
 - PivotTable Fields: Box containing all the variables from selection
 - Filters: Box where you can select fields to filter the rows
 - Columns: Field(s) used to define the columns of the table
 - Rows: Field(s) used to define the rows of the table
 - Values: Type of summary statistic that the table should display
- Possible summary statistics
 - Sum
 - Count
 - Average
 - Max
 - Min
 - Product
 - StdDev
 - Var

- Q: When was the research on non-small cell lung cancer most active?
- O: What journals published more papers on that topic?
- Q: What institutions have conducted the most research in this area?
- Q: What was the average number of authors for each journal?
- Q: What other questions could we explore in this dataset?
- Go to tab named "Pivot Table" and play around with the example or create your own tab and start from scratch

PivotCharts

- PivotCharts are visual representations of the PivotTable
- Create PivotCharts through the Insert menu after selecting data
- Different options in menu bar
 - PivotChart Fields: Box containing all the variables from selection
 - Filters: A box where you can select fields to filter the axis labels
 - Legend(Series): Field(s) that will be used to create legends
 - Axis (Categories): Field(s) used to define axis labels
 - Values: Type of summary statistic that the chart should summarize
- The default PivotChart is a barplot but many other options exist
- When chart is selected, go through the Design menu to find Change Chart Type

The End

Dale