

Lecture 29T

Produced by Dr. Worldwide

Stochastic Simulation

- Simulation is used to "simulate" the operations of various kinds of real-world systems or processes with the aid of a computer
- We make assumptions about how a system works
- These assumptions constitute a model
- Models are used to gain some understanding of how a system behaves
- In simple models, we can use analytical (mathematical) methods to obtain exact information on questions of interest
- In complex models, use simulation to evaluate the model numerically

Monte Carlo Process

- Large proportion of applications of simulations are for probabilistic models
- Monte Carlo is a technique for selecting numbers randomly from a probability distribution
- Monte Carlo is not a simulation model, but a mathematical process used within a simulation
- Monte Carlo simulation can also be thought of as multiple probability simulation
- Read Link 1 on course website for more description about Monte Carlo

Random Number Generator

- To run a simulation, we may need "observations" from a random process
- If we "know" the distribution of these observations, we might be able to generate them artificially
- Historically, random numbers have been generated physically
 - Throwing dice
 - Dealing cards
 - Drawing balls from urns
- Not until mid 1950's where electronic random number generators were used
- Two kinds of random number generators: physical and numerical
- Computer are equipped with numerical random number generators

Random Number Generator

- Q: Other than my teaching, is anything truly random?
- Numerical random number generators are not really random
- The most basic type of random numbers that we can artificially generate are from the Uniform[0,1] distribution where numbers between 0 and 1 are equally likely
- RAND() function in Excel samples from this distribution
- We can generate random numbers from any other distribution from the RAND() function
- Read Link 2 on course website for more description about RAND()

• Suppose we want to simulate the result of spinning a wheel of fortune

- No physical version of the wheel, but can generate random uniform numbers
- Q: How can we use RAND() to "spin" the wheel?

- Compute probabilities of each outcome
- Let *X* be the result from spinning the wheel once
- Possible outcomes are *X* ∈ {0,10,20,100}
- Each segment of the wheel has the same area
- Probabilities under assumption wheel is "fair"
 - $P(X = 0) = \frac{1}{8}$ • $P(X = 10) = \frac{4}{8} = \frac{1}{2}$ • $P(X = 20) = \frac{2}{8} = \frac{1}{4}$ • $P(X = 100) = \frac{1}{8}$

• Represent probabilities within the interval [0,1]

• Use Excel RAND() to generate a *U* from the Uniform [0,1] distribution and set

$$X = \begin{cases} 0, & \text{if } 0 \le U \le 1/8, \\ 10, & \text{if } 1/8 < U \le 5/8, \\ 20, & \text{if } 5/8 < U \le 7/8, \\ 100, & \text{if } 7/8 < U \le 1. \end{cases}$$

- Download SpinWheel.xlsx from link Sheet 1 on course website
- When we use the RAND() function repeatedly, the random numbers generated are independent of each other
- We can use Excel to simulate as many spins of the wheel as we want
- Random sample located in cells E6:E47
- We are simulating 42 spins of this wheel
- Compare theoretical mean and standard deviation to sample statistics

17	True mean	22.5			
40	True media	000.75	12	Sample mean	26.9047619
18	True variance	893.75	12	Sample standard d	33 67622707
19	True standard devia	29.89565186	13	Sample Standard di	33.07022707

- To transform, the Uniform[0,1] numbers generated by the function RAND() we can create a look-up table
 - 1^{st} column contains the values of the function h(x) = P(X < x)
 - 2^{nd} column contains the values of x
- Table contain in array B6:C9

x
0
10
20
100

• Table saved into variable named CDF_Table

• The command VLOOKUP(cell, look-up table, 2) will compare the number in the cell to the ranges defined by the first column of the look-up table, and return the value in the second column

X

0

10

10

10

10

• Example of function usage

Cumulative P(X < x)	x	ł.	Uniform U
0.00	0		0.1185088
0.13	10		0.2509473
0.63	20		0.1383176
0.88	100		0.1524281
		•	0.1422752

• Value U = 0.1185 is between 0 and 0.13 so VLOOKUP returns 0

Simulation for Discrete

• Suppose we want to use simulation to generate samples from a random variable *X* that takes values

 $\{x_1, x_2, x_3, \cdots, x_k\}$

with probabilities $P(X = x_i) = p_i$, $i = 1,2,3, \dots, k$

- For convenience, we can assume $x_i \leq x_{i+1}$
- We want to generate a random number that has the same distribution as X
- Assume we have a computer that can generate random numbers uniformly distributed on the interval [0,1]

Simulation for Discrete

• Step 1: Compute the cumulative probabilities

$$F_i = P(X \le x_i) = p_1 + \dots + p_i, \qquad i = 1, 2, 3, \dots, k$$

- Note that $F_0 = 0$ and $F_k = 1$
- Step 2: Generate a random number $U \sim Uniform[0,1]$
- Step 3: Return $X = x_i$ if $F_{i-1} < U \leq F_i$

Ex: Cell Phone Production

- Suppose we want to model the production of a cellphone factory
- Factory ships cellphones in boxes containing 100 phones
- Each cellphone has an independent probability p=0.01 of being defective
- We want to simulate a shipment containing 20 boxes
- We are interested in both the number of defective cellphones in a shipment, and the number of boxes containing at least one defective cellphone in a shipment
- If N_i denotes the number of defective cellphones in box i, then $N_i \sim Binomial(100,0.01)$
- Related to flipping an unfair coin with probability of heads equal to 0.01

Ex: Cell Phone Production

• Instead of simulating the N_i 's, we try to simulate coin flips, and evaluate

 $N_i = \sum_{j=1}^{100} X_{ij}$

- where $X_{ij} = \begin{cases} 1 & if the jth cellphone in box i is defective \\ 0 & otherwise \end{cases}$
- Download SimBinomial.xlsx from link Sheet 2 on course website
- Q: What do each of the columns represent?
- Q: Where are the simulated N_i 's?
- Q: What is the meaning of the Excel syntax =IF(RAND()>0.99,1,0)?

The End

Dale