

Lecture 4 T

Produced by Dr. Worldwide

- Infeasible problem
 - A linear program is infeasible if there is no point that satisfies all the constraints
 - Consider the linear program

Maximize5x + 3ySubject to $4x + 2y \le 8$ $x \ge 4$ $y \ge 6$

• When $x \ge 4$ and $y \ge 6$, 4x + 2y > 8

4(4) + 2(6) = 28 > 84(5) + 2(7) = 34 > 8

- Multiple optimal solutions
 - A linear program may have multiple optimal solutions if there are two or more extreme points along the optimal level curve for the problem
 - Consider the linear program

Maximize40x + 30ySubject to $x + 2y \le 40$ $4x + 3y \le 120$ $x \ge 0$ $y \ge 0$

Optimal points: (24,8) & (30,0)
40(24) + 30(8) = 1200
40(30) + 30(0) = 1200

- Unbounded problem
 - A linear program is unbounded if the feasible region is not closed and the objective function grows (decreases) indefinitely without bound
 - Similar to the infeasible problem where no solution exists
 - Consider the two linear programs with identical feasible regions

A) Maximize	2x + y	B) Minimize	2x + y
Subject to	$x + y \ge 5$	Subject to	$x + y \ge 5$
	$x \le 4$		$x \leq 4$
	$x \ge 0$		$x \ge 0$
	$y \ge 0$		$y \ge 0$

• Which linear program is unbounded, A or B?

- Unbounded problem
 - In both linear programs, the feasible region is unbounded

- The maximization linear program is unbounded
- The minimization linear program has a single optimal solution at (0,5)

- Majority of linear programs solved using a computer
- Excel's built-in tool called Solver is capable of handling linear optimization using the simplex algorithm from George Dantzig
- Recall: Beaver Creek Pottery Company from Lecture 2
 - Download BeaverCreek.xlsx from website link called Sheet 1
 - Linear Program

S

Maximize
$$40x + 50y$$
Subject to $x + 2y \le 40$ $4x + 3y \le 120$ $x \ge 0$ $y \ge 0$

Optimal: 24 Bowls and 8 Mugs ${\color{black}\bullet}$

	А	В	С	D	Е	F	G
1	The Beaver Creek P	ottery Compa	any				
2							
3	Products:	Bowl	Mug				
4	Profit per unit:	40	50				
5	Resources:			Usage	Constraint	Available	Left over
6	Labor (hr/unit)	1	2	0	<=	40	40
7	Clay (lb/unit)	4	3	0	<=	120	120
8							
9							
10	Production:						
11	Bowls =	0					
12	Mugs =	0					
13	Profit =	0					

	А	В	С	D	Е	F	G
1	The Beaver Creek P	ottery Compa	any				
2							
3	Products:	Bowl	Mug				
4	Profit per unit:	40	50				
5	Resources:			Usage	Constraint	Available	Left over
6	Labor (hr/unit)	1	2	0	<=	40	40
7	Clay (lb/unit)	4	3	0	<=	120	120
8							
9							
10	Production:						
11	Bowls =	0					
12	Mugs =	0					
13	Profit =	0	Objective	Function:	B4*B*11+0	4*B12	

	А	В	С	D	Е	F	G
1	The Beaver Creek P	ottery Compa	any				
2							
3	Products:	Bowl	Mug				
4	Profit per unit:	40	50	Labor Use	d: B6*B11+	-C6*B12	
5	Resources:			Usage	Constraint	Available	Left over
6	Labor (hr/unit)	1	2	0	<=	40	40
7	Clay (lb/unit)	4	3	0	<=	120	120
8				Clay Used	: B7*B11+C	7*B12	
9				,			
10	Production:						
11	Bowls =	0					
12	Mugs =	0					
13	Profit =	0					

	А	В	С	D	Е	F	G
1	The Beaver Creek P	ottery Compa	any				
2							
3	Products:	Bowl	Mug				
4	Profit per unit:	40	50				
5	Resources:			Usage	Constraint	Available	Left over
6	Labor (hr/unit)	1	2	0	<=	40	40
7	Clay (lb/unit)	4	3	0	<=	120	120
8						Capacity	
9							
10	Production:						
11	Bowls =	0					
12	Mugs =	0					
13	Profit =	0					

	А	В	С	D	E	F	G
1	The Beaver Creek P	ottery Compa	any				
2							
3	Products:	Bowl	Mug				
4	Profit per unit:	40	50			Labor Wa	ste: F6-D6
5	Resources:			Usage	Constraint	Available	Left over
6	Labor (hr/unit)	1	2	0	<=	40	40
7	Clay (lb/unit)	4	3	0	<=	120	120
8						Clay Wa	ste: F6-D6
9						,	
10	Production:						
11	Bowls =	0					
12	Mugs =	0					
13	Profit =	0					

- Optimizing with Excel
 - Select Data and then select Solver by the Analyze section
 - Observe window

Set Objective:		\$B\$13		1
To: <u>M</u> ax	() Mi <u>n</u>	○ <u>V</u> alue Of:	0	
<u>By</u> Changing Variab	le Cells:			
\$B\$11:\$B\$12				1
Subject to the Const	traints:			
\$D\$6 <= \$F\$6 \$D\$7 <= \$F\$7			^	Add
				<u>C</u> hange
				<u>D</u> elete
				<u>R</u> eset All
				Load/Save
Make Unconstra	ained Variables Non-No	egative		
S <u>e</u> lect a Solving Method:	Simplex LP		~	Options
Solving Method				
Select the GRG No for linear Solver P	onlinear engine for Solv roblems, and select the	ver Problems that are si Evolutionary engine fo	nooth nonlinear. Select r Solver problems that	the LP Simplex engine are non-smooth.

- Optimizing with Excel
 - Cell you are trying to optimize with objective function

Se <u>t</u>	Objective:	\$E	3\$13			Ť
Max	kimize or minimize	То: 💽 <u>М</u>	ax 🔿 Mi <u>n</u>			
Cho	ose your decision	variables				
Cho 10	ose your decision v Production:	/ariables			٦	
Cho 10 11	ose your decision v Production: Bowls =	/ariables 0	<u>B</u> y Changing Vari	iable Cells:	1	

• Optimizing with Excel

Resources:

Labor (hr/unit)

Clay (lb/unit)

5

6

- Create your constraints using Add
- You can type or click to select cell
- You will see your constraints in the Subject to the Constraints
- Notice box for nonnegativity

Make Unconstrained Variables Non-Negative

В	С	D	Е	F
ottery Compa	iny			
Bowl	Mug			
40	50			
		Usage	Constraint	Available
1	2	C	<=	40
4	3	C	<=	120
Add Constraint				×
Cell Reference:			Co <u>n</u> straint:	
\$D\$6	1	<= ~	=\$F\$6	<u>+</u>
<u>о</u> к		Add		<u>C</u> ancel
<u>о</u> к		Add		<u>C</u> ancel
<u>ок</u> Jsage	Constrain	Add t Availat	ole	<u>C</u> ancel S <u>u</u> bject to the Co
<u>ок</u> Jsage О	Constraint <=	Add t Availat	ole 2 40	<u>Cancel</u> Subject to the Co \$D\$6 <= \$F\$6

- Optimizing with Excel
 - Select Solve

• Optimal solution can be found in decision variables

Production:	
Bowls =	0
Mugs =	C
Profit =	0

Production:	
Bowls =	24
Mugs =	8
Profit =	1360

- Annabelle Sizemore has a massive amount of money (AKA stacks) from numerous sources that she needs to do something with (AKA make it rain)
- After researching the market, she has decided to split her money to 2 places
 - S&P index fund from Shield Securities
 - Internet stock fund from Madison Funds, Inc.
- Q: How should Annabelle split her money in these two funds?
- Decision Variables
 - x = Amount Invested in S&P Index Fund
 - *y* = *Amount Invested in Internet Stock Fund*
 - *u* = *Number of S&P Index Fund Shares*
 - v = Number of Internet Stock Fund Shares

- Average annual return over the last 3 years for the S&P index fund was 17% and 28% for the internet stock fund
 - Goal: Maximize return on her investment
 - Objective function: Z = 0.17x + 0.28y
 - Price per share of S&P index fund is \$175 and \$208 for internet stock fund
 - Objective function: Z = 0.17(175u) + 0.28(208v)
- Constraints
 - Must invest nonnegative amounts : $x \ge 0$ & $y \ge 0$ ($u \ge 0$ & $v \ge 0$)
 - Only has \$120,000 to invest: x + y ≤ 120,000 (175u + 208v ≤ 120,000)
 - The proportion of the dollar amount she invests in the index fund relative to the internet fund should be at least one-third: $x/y \ge 1/3$ or $3x y \ge 0$ $(3(175u) - 208v \ge 0)$
 - Amount invested in index fund no more than twice the amount invested in the internet fund: $x \le 2y$ or $x 2y \ge 0$ $(175u 2(208v) \ge 0)$

• Full linear program

Maximize Subject to

Maximize Subject to $\begin{array}{l} 0.17(175u) + 0.28(208v) \\ 175u + 208v \leq 120,000 \\ 3(175u) - 208v \geq 0 \\ 175u - 2(208v) \geq 0 \\ u \geq 0 \\ v \geq 0 \end{array}$

- Alternative approach: use growth vector and level curves (contours)
 - Download AnnabelleInvest.xlsx from website link called Sheet 2
 - Try to use Excel Solver to find the optimal solution
 - Solution
 - *x* =\$30,000
 - *y* =\$90,000
 - Return is \$30,300

Se <u>t</u> Objective:		\$B\$14		<u>↑</u>
To: <u>M</u> ax	() Mi <u>n</u>	O <u>V</u> alue Of:	0	
By Changing Variable	Cells:			
\$B\$12:\$B\$13				1
S <u>u</u> bject to the Constr	aints:			
\$D\$6 <= \$F\$6 \$D\$7 >= \$F\$7			~	Add
\$D\$8 <= \$F\$8				<u>C</u> hange
				Delete
				Delete
				<u>R</u> eset All
			× [Load/Save
Maka Unconstrai	and Variables Nep. N	ogativa	l	

The End

Dale