

Lecture 5 T

Produced by Dr. Worldwide

Sensitivity Analysis

- A sensitivity analysis is how we investigate the effect changes in the objective function and constraints have on the optimal solution
- Types of changes
 - Changes in the objective function coefficients
 - Changes in the constraint quantity values
 - Changes in the constraint coefficients
 - Additional constraints
 - Additional decision variables
- Excel's Solver can handle changes in the first two types
- Other types involve rerunning Excel's Solver with different information

Changing Objective Function

- Q: How much can parameters change without changing the optimal solution?
- Changes in objective function parameters lead to changes in the direction of level curves in a graph
- Consider the Beaver Creek linear program

Maximize40x + 50ySubject to $x + 2y \le 40$ $4x + 3y \le 120$ $x \ge 0$ $y \ge 0$

• Recall optimal solution was (24,8)

Changing Objective Function

We will "tilt" the objective function coefficients (a, b) = (40,50) until the optimal solution changes

• Any vector in direction of (*a*, *b*), where (*a*, *b*) is in the purple region will lead to the same optimal solution

Changing Objective Function

- Edges of purple cone are perpendicular to constraints
 - Line y = 2x is perpendicular to x + 2y = 40 $\left(y = 20 \frac{1}{2}x\right)$
 - Line $y = \frac{3}{4}x$ is perpendicular to 4x + 3y = 120 $\left(y = 40 \frac{4}{3}x\right)$
- Points in the purple cone are characterized by slopes
- Points (a, b) in purple cone must satisfy $\frac{3}{4} \le \frac{b}{a} \le 2$
- If we fix b = 50, then $25 \le a \le \frac{200}{3}$
- If we fix a = 40, then $30 \le b \le 80$

- Download BeaverCreek.xlsx from website link called Sheet 1
- We start by considering changes to the objective function 40x + 50y
- Attempt to solve linear program produces menu of options

Solver Results X Solver found a solution. All Constraints and optimality conditions are satisfied. Reports • Keep Solver Solution • Restore Original Values Answer Sensitivity Limits	Select Sensitivity	Reports Answer Sensitivity Limits		-	
Return to Solver Parameters Dialog Outline Reports <u>QK</u> Cancel Save Scenario				_	
Solver found a solution. All Constraints and optimality conditions are satisfied. When the GRG engine is used, Solver has found at least a local optimal solution. When Simplex LP is used, this means Solver has found a global optimal solution.					
Selecting <mark>OK</mark> creates a new sheet	in Excel file	Sensitivity Report 1	Sheet1	+	

• Sensitivity analysis for objective function displayed below

Variable Cell	S					
		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$11 Bov	wls = Bowl	24	0	40	26.66666667	15
\$B\$12 Mu	ıgs = Bowl	8	0	50	30	20

• If we fix
$$b = 50$$
, then $25 = 40 - 15 \le a \le 40 + 26.67 = \frac{200}{3}$

- If we fix a = 40, then $30 = 50 20 \le b \le 50 + 30 = 80$
- Next, we consider changes to the constraint quantities

Changing Constraint Quantity

• Changing constraint quantities (*c*, *d*) from (40,120)

Subject to

- $x + 2y \le c$ $4x + 3y \le d$ $x \ge 0$ $y \ge 0$
- Changes in these quantities cause vertical shifts of constraints in graph
- Constraint is binding at the optimal solution if the constraint holds with equality
- Constraint is non-binding at optimal solution if the constraint fails with equality
- In this sensitivity analysis, there is not concern about different optimal solutions

Changing Constraint Quantity

- Binding constraints at the optimal solution (24,8)
 - x + 2y = 24 + 2(8) = 40 = c
 - 4x + 3y = 4(24) + 3(8) = 120 = d
- Non-binding constraints at the optimal solution (24,8)
 - $x = 24 \neq 0$
 - $y = 8 \neq 0$
- Q: How can we change (c, d) while keeping the first two constraints binding at optimality? (i.e. we want the optimal solution to occur at the intersection of the lines x + 2y = c and 4x + 3y = d)

Changing Constraint Quantity

• Adjustment of y-intercepts of lines until lines don't intersect and one of the constraints is no longer "necessary"

- Follow same steps in Excel from previous sensitivity analysis
- Sensitivity analysis for constraint quantities displayed below

Constraints							
			Final	Shadow	Constraint	Allowable	Allowable
	Cell	Name	Value	Price	R.H. Side	Increase	Decrease
	\$D\$6	Labor (hr/unit) Usage	40	16	40	40	10
	\$D\$7	Clay (lb/unit) Usage	120	6	120	40	60

- If we fix d = 120 lbs. of clay, then $30 = 40 10 \le c \le 40 + 40 = 80$
- If we fix c = 40 hours of labor, then $60 = 120 60 \le d \le 120 + 40 = 160$

Shadow Prices

- The shadow price or dual value of a constraint (resource) correspond to the maximum amount that one would be willing to pay for one additional unit of that resource
- Standard sensitivity reports include these shadow prices
- In general, there is one shadow price for each constraint

Constraints						
			Final	Shadow		
	Cell	Name	Value	Price		
	\$D\$6	Labor (hr/unit) Usage	40	16		
	\$D\$7	Clay (lb/unit) Usage	120	6		

- The shadow prices of labor and clay are 16 and 6, respectively
- Implication for labor
 - If we increase labor hours from 40 to 40 + x, the profit increases by 16x
 - We shouldn't pay more than \$16 per hour of labor
- Implication for clay
 - If we increase pounds of clay from 120 to 120 + y, the profit increases by 6y
 - We shouldn't pay more than \$6 per pound of clay
- This only can be applied for constraint quantity values in the limits under the specificity analysis

The End

Dale