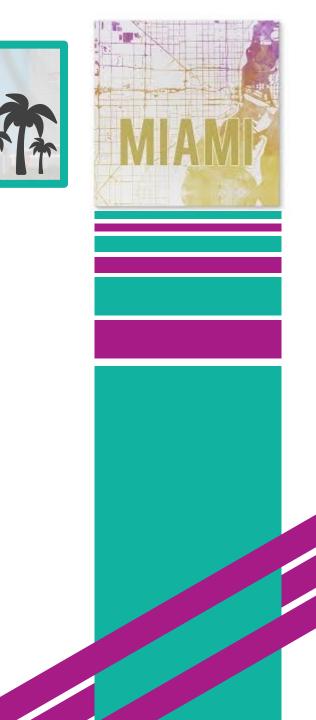


Lecture 7 T

Produced by Dr. Worldwide

- Investor Kathy Allen has \$70,000 to divide across multiple investments
 - Municipal bonds with 8.5% return
 - Certificate of deposit with 5% return
 - Treasury bills with 6.5% return
 - Growth stock with 13% return
- Q: How much should Kathy invest to maximize return?
- Guidelines for diversification
 - No more than 20% of the total investment should be in municipal bonds
 - Amount invested in CDs shouldn't exceed amount invested in the rest
 - At least 30% of the investment should be in treasury bills and CDs
 - More invested in CDs & treasury bills than in the other two by a ratio of at least 1.2 to 1
 - Kathy wants to invest the entire \$70,000

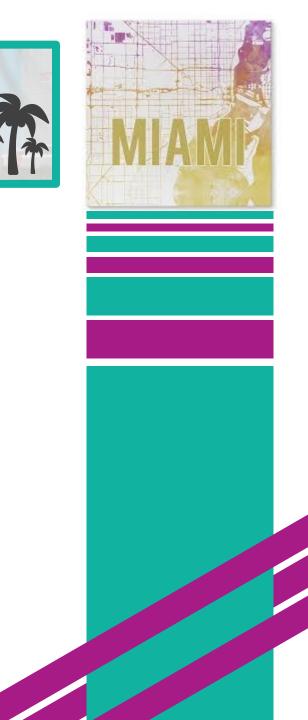

- Decision variables
 - $x_1 = Dollars$ invested in municipal bonds
 - $x_2 = Dollars$ invested in CDs
 - $x_3 = Dollars$ invested in Treasury Bills
 - $x_4 = Dollars$ invested in Growth Stock

• Linear program

Maximize $0.085x_1 + 0.05x_2 + 0.065x_3 + 0.13x_4$

Subject to

 $\begin{aligned} x_1 + x_2 + x_3 + x_4 &= 70000\\ x_1/(x_1 + x_2 + x_3 + x_4) &\leq 0.2\\ x_2 &\leq x_1 + x_3 + x_4\\ (x_2 + x_3)/(x_1 + x_2 + x_3 + x_4) &\geq 0.3\\ (x_2 + x_3)/(x_1 + x_4) &\geq 1.2\\ x_1, x_2, x_3, x_4 &\geq 0 \end{aligned}$

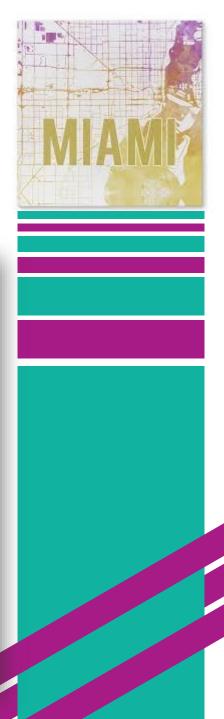


• Linear program in standard form

Maximize $0.085x_1 + 0.05x_2 + 0.065x_3 + 0.13x_4$

Subject to $\begin{aligned} x_1 + x_2 + x_3 + x_4 &= 70000\\ 0.8x_1 - 0.2x_2 - 0.2x_3 - 0.2x_4 &\leq 0\\ -x_1 + x_2 - x_3 - x_4 &\leq 0\\ 0.3x_1 - 0.7x_2 - 0.7x_3 + 0.3x_4 &\leq 0\\ 1.2x_1 - x_2 - x_3 + 1.2x_4 &\leq 0\\ x_1, x_2, x_3, x_4 &\geq 0 \end{aligned}$

- Download Investment-1.xlsx from course website from link Sheet 1
- Optimal solution $(x_1, x_2, x_3, x_4) = (0, 0, 38181, 3181, 18)$



• Sensitivity analysis

Variable C	Variable Cells									
		Final	Reduced	Objective	Allowable	Allowable				
Cell	Name	Value	Cost	Coefficient	Increase	Decrease				
\$B\$15	Municipal bonds = (\$)	0	-0.045	0.085	0.045	1E+30				
\$B\$16	CDs = (\$)	0	-0.015	0.05	0.015	1E+30				
\$B\$17	Treasury bills = (\$)	38181.81818	0	0.065	0.065	0.015				
\$B\$18	Growth stock = (\$)	31818.18182	0	0.13	1E+30	0.045				

Constraints

		Final Shadow Constraint Allowable		Allowable		
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$F\$7	Total investment Usage	70000	0.094545455	70000	1E+30	70000
\$F\$8	Constraint 1 Usage	-14000	0	0	1E+30	14000
\$F\$9	Constraint 2 Usage	-70000	0	0	1E+30	70000
\$F\$10	Constraint 3 Usage	-17181.81818	0	0	1E+30	17181.81818
\$F\$11	Constraint 4 Usage	6.54836E-11	0.029545455	0	37800	70000

• Created variables

	Name Manager							? ×	<
Name Manager	<u>N</u> ew	<u>E</u> dit	<u>D</u> ele	te				<u>F</u> ilter ▼	
5	Name	Value		Refers	То	Scope	Comn	nent	
	A	{"0.8","-0.2","-0	0.2","-0.2	=Shee	t1!\$B\$8:\$E\$11	Workbook			
	b	{"0";"0";"0";"0";	}	=Shee	t1!\$H\$8:\$H\$11	Workbook			
	🔲 obj	{"0.085","0.05"	","0.065",	=Shee	t1!\$B\$5:\$E\$5	Workbook			
	x	{"0";"0";"3818	1.81818"	=Shee	t1!\$B\$15:\$B\$18	Workbook			

1	1	1	1	Edit Name		?	×
0.8	-0.2	-0.2	-0.2	<u>N</u> ame:	A		
-1	1	-1	-1	Scope:	Workbook		
0.3	-0.7	-0.7	0.3	C <u>o</u> mment:			^
1.2	-1	-1	1.2				
				<u>R</u> efers to:	=Sheet1!\$B\$8:\$E\$11		<u> </u>
					ОК	Can	

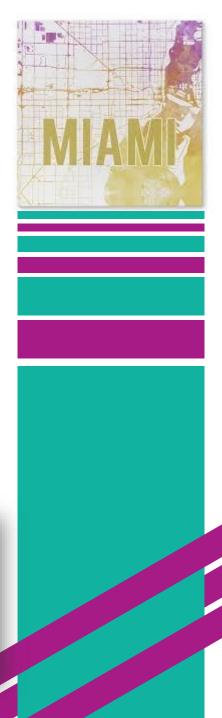
• Created variables

Edit Name Production: Name: \sim Scope: Workbook Municipal bonds = 0 Comment: CDs = O Treasury bills = 0 Growth stock = 0 Refers to: =Sheet1!\$B\$15:\$B\$18 $\mathbf{\Phi}$ 0 OK Cancel 70000 Edit Name Name: b 0 Scope: \sim Workbook 0 Comment: \sim 0 0 Refers to: =Sheet1!\$H\$8:\$H\$11 ₫ OK Cancel

• Usage of variables

Products:	Municipal bonds	CDs	Treasury bills	Growth stock			
	(\$)	(\$)	(\$)	(\$)			
Return:	0.085	0.05	0.065	0.13			
Constraints:					Usage	Constraint	R.H.S.
Total investment	1	1	1	1	0	=	70000
Constraint 1	0.8	-0.2	-0.2	-0.2	=MMULT(A,)	()	0
Constraint 2	-1	1	-1	-1	0	<=	0
Constraint 3	0.3	-0.7	-0.7	0.3	0	<=	0
Constraint 4	1.2	-1	-1	1.2	0	<=	0
Production:							
Municipal bonds =	0						
CDs =	0						
Treasury bills =	0						
Growth stock =	0						
Return =	0						

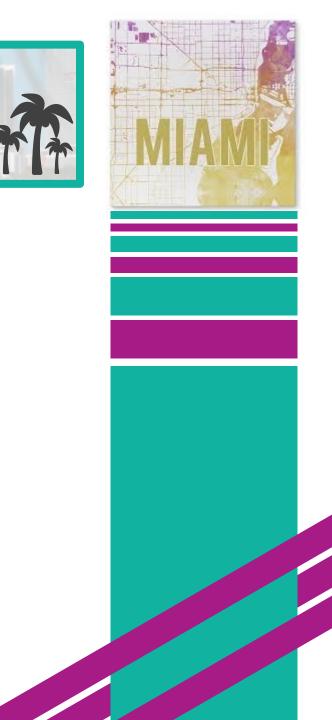
• Usage of variables

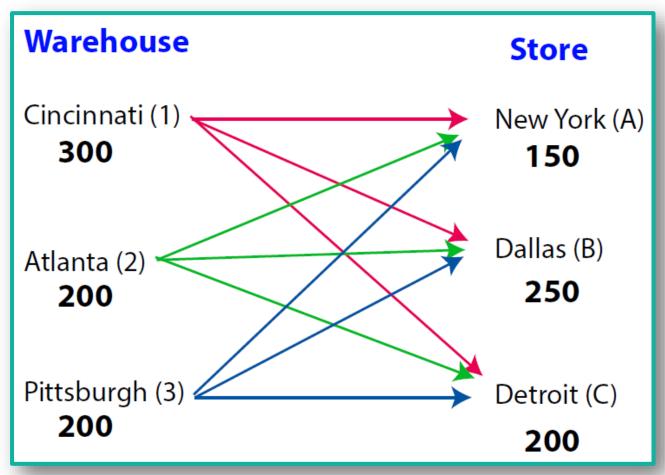

Set Objective: \$B\$19 To: Max Min Yalue Of: By Changing Variable Cells: x Subject to the Constraints: \$F\$7 = \$H\$7 Subject to the Constraints: \$F\$8:\$F\$11 <= b Add Change Delete Reset All	Solver Parameters			
By Changing Variable Cells: x Subject to the Constraints: SF\$7 = \$H\$7 \$F\$8:\$F\$11 <= b ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	Se <u>t</u> Objective:	\$B\$19		1
x Subject to the Constraints: SF\$7 = \$H\$7 \$F\$8:\$F\$11 <= b	To: Max Min 	○ <u>V</u> alue Of:	0	
Subject to the Constraints: SF\$7 = \$H\$7 \$F\$8:\$F\$11 <= b Change Delete <u>Reset All</u>	By Changing Variable Cells:			
\$F\$7 = \$H\$7 \$F\$8:\$F\$11 <= b	x			<u>+</u>
\$F\$8:\$F\$11 <= b	Subject to the Constraints:			
Change Delete Reset All			<u> </u>	Add
<u>R</u> eset All				<u>C</u> hange
				<u>D</u> elete
				<u>R</u> eset All
Load/Save				Load/Save

• Q: What other variable was created and how is it being used?

		NULL YOUR

- Best Boy retail chain ships televisions from 3 of its distribution warehouses to three of its retail stores monthly
- Each warehouse has a fixed supply per month and fixed demand per month
- Q: How many TVs should be shipped from each warehouse to each store to minimize the total cost of transportation?
- Supply (700 TVs) and Demand (600 TVs)

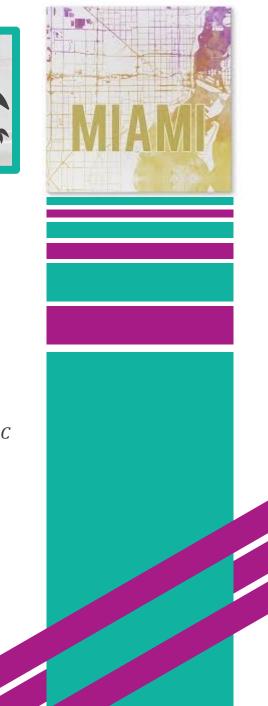

Warehouse Supply (TVs)		Store	Demand (TVs)
1. Cincinnati	300	A. New York	150
2. Atlanta	200	B. Dallas	250
3. Pittsburgh	200	C. Detroit	200


• Shipping cost per TV for each route

Warehouse	Store
1. Cincinnati	A. New York
2. Atlanta	B. Dallas
3. Pittsburgh	C. Detroit

	To Store				
From Warehouse	Α	В	С		
1	\$16	\$18	\$11		
2	14	12	13		
3	13	15	17		

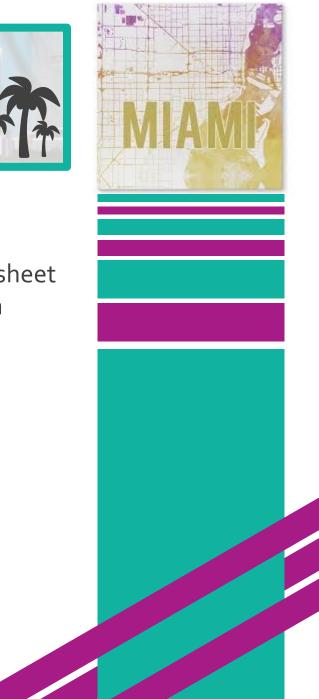
• Visual of all routes (supply > demand)


- Decision variables
 - Need to have one for each of the 9 routes
 - x_{ij} = number of televisions from warehouse *i* to store *j*
 - i = 1,2,3 & j = A, B, C
- Linear program in standard form

Minimize $16x_{1A} + 18x_{1B} + 11x_{1C} + 14x_{2A} + 12x_{2B} + 13x_{2C} + 13x_{3A} + 15x_{3B} + 17x_{3C}$

Subject to

 $\begin{array}{l} x_{1A} + x_{1B} + x_{1C} \leq 300 \quad \text{(Cincinnati supply)} \\ x_{2A} + x_{2B} + x_{2C} \leq 200 \quad \text{(Atlanta supply)} \\ x_{3A} + x_{3B} + x_{3C} \leq 200 \quad \text{(Pittsburgh supply)} \end{array}$


 $\begin{array}{ll} x_{1A} + x_{2A} + x_{3A} \geq 150 & (\text{New York demand}) \\ x_{1B} + x_{2B} + x_{3B} \geq 250 & (\text{Dallas demand}) \\ x_{1C} + x_{2C} + x_{3C} \geq 200 & (\text{Detroit demand}) \end{array}$

- Download Transportation-1.xlsx from course website from link Sheet 2
- Sheet called Standard contains the standard linear program format and the sheet called Alternative contains a more compact form of the same linear program

• Focus on Alternative sheet

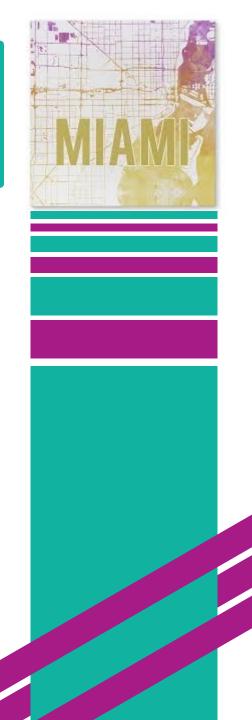
	А	В	С	D	E	F	G
4	Warehouse	New York	Dallas	Detroit	TV sets shipped	Constraint	Supply
5	Cincinatti	0	0	200	200	<=	300
6	Altanta	0	200	0	200	<=	200
7	Pittsburgh	150	50	0	200	<=	200
8	TV sets shipped	150	250	200			
9	Constraint	>=	>=	>=			
10	Demand	150	250	200			
11	Cost (\$)	7300					
12							
13							
14	Warehouse	New York	Dallas	Detroit			
15	Cincinatti	16	18	11			
16	Altanta	14	12	13			
17	Pittsburgh	13	15	17			

• Use of SUMPRODUCT in creation of objective function

	А	В	С	D
4	Warehouse	New York	Dallas	Detroit
5	Cincinatti	0	0	200
6	Altanta	0	200	0
7	Pittsburgh	150	50	0
8	TV sets shipped	150	250	200
9	Constraint	>=	>=	>=
10	Demand	150	250	200
11	Cost (\$)	7300		
12		=SUMPF	RODUCT(B5:	D7, B15:D17)
13				
14	Warehouse	New York	Dallas	Detroit
15	Cincinatti	16	18	11
16	Altanta	14	12	13
17	Pittsburgh	13	15	17

• Searching for minimum of objective function

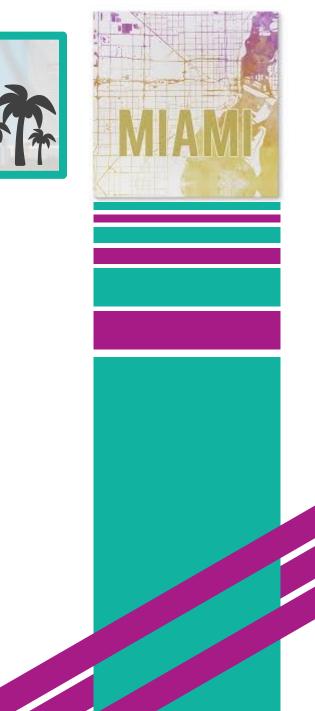
To:	() <u>M</u> ax	• Mi <u>n</u>	○ <u>V</u> alue Of:	0
Optim	al solution		<i>x x</i>) – (


 $(x_{1A}, x_{1B}, x_{1C}, x_{2A}, x_{2B}, x_{2C}, x_{3A}, x_{3B}, x_{3C}) = (0, 0, 200, 0, 200, 0, 150, 50, 0)$

• Textbook uses equality for demand instead of greater than or equal to

Subject to the Constraints:					
		A	В	C	D
\$B\$8:\$D\$8 = \$B\$10:\$D\$10					
\$E\$5:\$E\$7 <= \$G\$5:\$G\$7	4	Warehouse	New York	Dallas	Detroit
	5	Cincinatti	0	0	200
	6	Altanta	0	200	0
		Pittsburgh	150	50	0
	8	TV sets shipped	150	250	200
	9	Constraint	>=	>=	>=
	10	Demand	150	250	200

- PM Computers assembles its own brand of laptops from component parts purchased overseas and domestically
- Most computers sold locally to the university, individuals, and businesses
- PM has production capacity to produce 160 computers per week with an additional 50 computers with overtime
- Cost per computer is \$190 during regular time and \$260 during overtime
- Additionally, it costs \$10 per computer per week to hold a computer in inventory for future delivery
- PM wants to meet all customer orders with no shortages and quality service



• Order schedule for the next 6 weeks

Computer Orders
105
170
230
180
150
250

• Q: How much regular time and overtime production is needed each week to meet its orders at the minimum total production cost?

- Each week, PM can produce computers either during regular time or during overtime.
- Each week, computers not used for an order are rolled over to the next week
- After the 6-week period, PM wants no inventory left over
- Decision variables
 - $r_j = regular \ production \ of \ computers \ per \ week \ j$
 - $o_j = overtime \ production \ of \ computers \ per \ week \ j$
 - $i_j = extra \ computers \ carried \ over \ as \ inventory \ in \ week \ j$
 - j = 1, 2, 3, 4, 5, 6

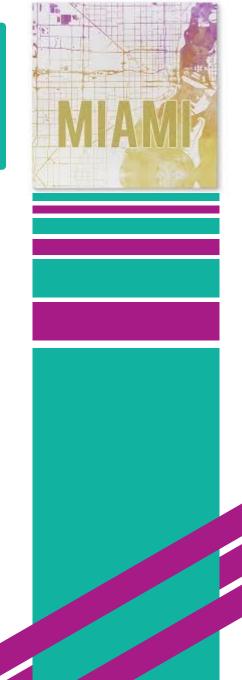
• Linear program in standard form


Minimize $190(r_1 + r_2 + r_3 + r_4 + r_5 + r_6) \\ +260(o_1 + o_2 + o_3 + o_4 + o_5 + o_6) \\ +10(i_1 + i_2 + i_3 + i_4 + i_5)$

Subject to

 $r_{1} + o_{1} - i_{1} = 105$ $r_{2} + o_{2} + i_{1} - i_{2} = 170$ $r_{3} + o_{3} + i_{2} - i_{3} = 230$ $r_{4} + o_{4} + i_{3} - i_{4} = 180$ $r_{5} + o_{5} + i_{4} - i_{5} = 150$ $r_{6} + o_{6} + i_{5} = 250$

 $\begin{array}{l} r_i \leq 160 \; for \; i \in \{1, 2, 3, 4, 5, 6\} \\ o_i \leq 50 \; for \; i \in \{1, 2, 3, 4, 5, 6\} \end{array}$


 $r_i, o_i, i_i \ge 0 \text{ for } i \in \{1, 2, 3, 4, 5, 6\}$

- Download Multischedule-1.xlsx from course website from link Sheet 3
- Sheet called Standard contains the standard linear program format and the sheet called Alternative contains a more compact form of the same linear program
- From Standard, see the following solution from Excel Solver

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6
Regular	160	160	160	160	160	160
Overtime	0	0	25	20	30	50
Inventory	55	45	0	0	40	
Total	160	215	230	180	190	250
Required	105	170	230	180	150	250

• Try to acquire the same solution from the Alternative format

The End

Dale