

Lecture 8 T

Produced by Dr. Worldwide

Integer Programming

- Prior linear programs have decision variables that are naturally integer-valued
- Optimal solutions are commonly not integer-valued
- Simply rounding up or down could lead to non-optimal solutions or could lie in an infeasible region
- Algorithms exist to handle this common problem
- Models where some/all the variables are required to be integer-valued are known as integer programming models

Integer Programming

- Total integer models are linear programming models where all the decision variables must be integer-valued
- **0-1 integer models** are linear programming models where all the decision variables must take the values o or 1
- Mixed integer models are linear programming models where some of the decision variables must be integer valued while others do not

Ex: Total Integer Model

- Machine shop owner is planning to expand by purchasing some new machines presses and lathes
- Owner estimated each press purchased will increase profit \$100 per day, and each lathe purchased will increase profit \$150 per day
- Number of machines the owner can purchase is limited by the cost of the machines and available floor space

Required					
Machine	Floor Space (ft. 2)	Purchase Price			
Press	15	\$8,000			
Lathe	30	4,000			

Ex: Total Integer Model

- Owner has a budget of \$40,000 and 200 square feet of floor space
- Q: How many of each type of machine should be purchased to maximize the daily increase in profit?
- Decision variables
 - x = number of presses
 - *y* = *number* of *lathes*
- Linear program in standard form

Maximize 100x + 150y

Subject to $8000x + 4000y \le 40000$ $15x + 30y \le 200$ $x, y \in \{0, 1, 2, \dots\}$

- Community council must decide which recreation facilities to construct
 - Swimming pool
 - Tennis center
 - Athletic field
 - Gymnasium
- Q: Which facilities should be constructed to maximize daily usage?
- Council's decision is subject to land and cost limitations

	Expected usage	Land requirements		
Recreation facility	(people/day)	Cost	(acres)	
Swimming pool	300	35000	4	
Tennis center	90	10000	2	
Athletic field	400	25000	7	
Gymnasium	150	90000	3	

- Community has \$120,000 budget and 12 acres of land
- Swimming pool and tennis center cannot both be constructed
- Binary decision variables (indicator variables)

• $x_1 = \begin{cases} 1 & if swimming pool is constructed \\ 0 & otherwise \end{cases}$ • $x_2 = \begin{cases} 1 & if tennis center is constructed \\ 0 & otherwise \end{cases}$ • $x_3 = \begin{cases} 1 & if athletic field is constructed \\ 0 & otherwise \end{cases}$ • $x_4 = \begin{cases} 1 & if gymnasium is constructed \\ 0 & otherwise \end{cases}$

• Linear program in standard form

Maximize $300x_1 + 90x_2 + 400x_3 + 150x_4$

Subject to $\begin{array}{ll} 35000x_1 + 10000x_2 + 25000x_3 + 90000x_4 \leq 120000 \\ 4x_1 + 2x_2 + 7x_3 + 3x_4 \leq 12 \\ x_1 + x_2 \leq 1 \\ x_1, x_2, x_3, x_4 \in \{0, 1\} \end{array}$

• The constraint $x_1 + x_2 \le 1$ is known as a mutually exclusive constraint which reflects the contingency that either the swimming pool or tennis center can be constructed but not both

- Q: What restriction would the constraint $x_1 + x_2 = 1$ imply?
- Q: What restriction would the constraint $x_1 + x_2 + x_4 = 2$ imply?
- The previous two constraints are also known as multiple-choice constraints
- Commonly, multiple-choice questions can have a single answer, but sometimes multiple-choice questions may have multiple answers
- Q: What restriction would the constraint $x_1 + x_2 + x_3 + x_4 \ge 2$ imply?
- Q: What restriction would the constraint $x_1 + x_2 + x_3 + x_4 \le 3$ imply?
- These previous two constraints are variations of the multiple-choice constraint

- Q: What restriction regarding the swimming pool (x_1) and the tennis center (x_2) would the constraint $x_2 \le x_1$ imply?
- The constraint $x_2 \le x_1$ is known as a conditional constraint and implies that one facility being constructed is conditional on another building be constructed?
- Q: What restriction would the constraint $x_2 = x_1$ imply?
- When the inequality is replaced with an equal sign in a conditional constraint, we get a corequisite constraint?

Ex: Mixed Integer Model

- Nancy Smith has \$250,000 to invest in 3 alternative investments for the year
 - Condominiums cost \$50,000 and return \$9,000 in 1 year
 - Land costs \$12,000 per acre and will return \$1,500 per acre in 1 year
 - Municipal bonds cost \$8,000 and will return \$1,000 in 1 year
- Only 4 condominiums, 15 acres of land, and 20 municipal bonds available
- Q: How many condominiums, acres of land, and municipal bonds should be purchased to maximize return?
- Q: How is this an example of a mixed integer model?

• Linear program in standard form

Maximize 100x + 150y

Subject to $8000x + 4000y \le 40000$ $15x + 30y \le 200$ $x, y \in \{0, 1, 2, \dots\}$

• Simplified linear program in standard form

Maximize 100x + 150y

Subject to $2x + y \le 10$ $3x + 6y \le 40$ $x, y \in \{0, 1, 2, \dots\}$ (Profit)

(Cost) (Floor Space) (Integer Requirement)

- Download MachineShop.xlsx from course website from link Sheet 1
- Q:What is the problem with the optimal solution?

	А	В	С	D	E	F	G	
1	Machine Shop							
2								
3	Products:	Presses	Lathes					
4		(unit)	(unit)					
5	Increase in profit per unit:	100	150					
6	Resources:			Usage	Constraint	Available	Left over	
7	Budget	2	1	10	<=	10		0
8	Space	3	6	40	<=	40		0
9								
10								
11	Production:							
12	Presses	2.2222222						
13	Lathes	5.5555556						
14	Profit =	1055.5556						

- We could fix the problem by rounding to the nearest integer
 (2.222,5.556) → (2,6)
- The problem is the point may be infeasible $3(2) + 6(6) = 42 \ge 40$
- We could fix the problem by rounding down $(2.222,5.556) \rightarrow (2,5)$
- This point is feasible but may not be optimal 100(2) + 150(5) = \$950
- No clear rule on how to round the solution to acquire the optimal solution for the integer programming model

• Graphical solution

• Finding optimal integer solution from Excel Solver

S <u>u</u> bject to	the Constraints:					
\$D\$7 <= 3 \$D\$8 <= 3	\$F\$8 \$F\$8					
Add Con	straint					\times
C <u>e</u> ll Refe	rence:			Co <u>n</u> strair	nt:	
\$B\$12:\$I	3\$13	1 int		integer	1	
	<u>о</u> к		<u>A</u> dd		<u>C</u> ancel	
					S <u>u</u> bject to the Const	raints:
					\$B\$12:\$B\$13 = inte \$D\$7 <= \$F\$7 \$D\$8 <= \$F\$8	ger
	<u>O</u> K		<u>A</u> dd		<u>Cancel</u> Subject to the Constr \$B\$12:\$B\$13 = inter \$D\$7 <= \$F\$7 \$D\$8 <= \$F\$8	raints: ger

• Optimal solution to integer programming model

	А	В	С	D	E	F	G	
1	Machine Shop							
2								
3	Products:	Presses	Lathes					
4		(unit)	(unit)					
5	Increase in profit per unit:	100	150					
6	Resources:			Usage	Constraint	Available	Left over	
7	Budget	2	1	8	<=	10		2
8	Space	3	6	39	<=	40		1
9								
10								
11	Production:							
12	Presses	1						
13	Lathes	6						
14	Profit =	1000						

The End

Dale