

Exploratory Data Analysis I

EDA Defined

- Tenderly Read Chapter 5
- Know the Process

Respect the Process

- Example: Wages
 - "Ecdat" R Package
 - Sample from 1987
 - 3,294 Workers
 - 48% Female
 - Variables
 - Experience (Yrs.)
 - Sex (M or F)
 - School (Yrs.)
 - Wage (Hourly in \$)

% In the second se

experience <int></int>	sex <fctr></fctr>	school <int></int>	wage <dbl></dbl>
18	male	3	5.5168263
15	male	4	3.5649777
18	male	4	9.0991811
10	female	5	0.6031654
11	male	5	3.8026428
14	male	5	7.5004465
16	male	5	4.3036667
14	male	5	4.8862931
15	female	6	4.3036667
9	female	6	2.2116065

Verbeek, Marno (2004) A Guide to Modern Econometrics, John Wiley and Sons.

- Think Creatively
- Quantity and Quality
- General:
 - What type of variation occurs within my variables?
 - What type of covariation occurs **between** my variables?

Variation

- Variable = Quantity, Quality, or Property You Can Measure
- Reason: Values Tend to "Vary"
- Example: Random
 - Categorical:
 - Eye Color
 - Occupation
 - Numerical:
 - Salary
 - Hair Count

- Initial Questions
 - Example: Random
 - Which Eye Color Occurs
 Most Often?
 - Are Salaries Skewed?
 - Where is the Middle 50% of the Sample in Regards to Hair Count?
 - Example: Wages
 - What did the Workforce Look Like in Terms of Sex?
 - How Spread Out Were
 Wages in 1987?

- Variation Visualized
 - Example: Wages
 - Categorical: Sex

Sex <fctr></fctr>	n <int></int>
female	1569
male	1725

- Variation Visualized
 - Example: Wages
 - Numerical: Hourly Wage

Unusual Values

- Outliers = Observations Outside the Pattern of the Data
 - Due to Error
 Remove
- Don't Drop or Change Without
 Justification
- Sensitivity Analysis
- Handling:
 - Drop Entire Row
 - Replace Instance with NA
- Problems:
 - Book: Visualization
 - Other: Inference

Unusual Values

- Example: Wages
 - Few People Above 30 \$/Hr
 - Drop Entire Row

Observations: 3294 🔿 3291

Replace Instance with NA

Observations: 3294 **3**294

- Covariation
 - Goal: Explain Variation
 - Describes the Behavior Between Variables
 - We Often Attempt to Explain Variation Within by Looking at Covariation Between
 - Identify the **Signal** despite the **Noise**

- More Questions
 - Example: Random
 - Are there Occupations with an Unusual Distribution of Eye Color?
 - Does Occupation Affect Salary?
 - What is the Relationship Between Salary and Hair Count?
 - Example: Wages


```
ggplot(data = mpg) +
geom_boxplot(
    mapping = aes(
        x = reorder(class, hwy, FUN = median),
        y = hwy
    )
)
```


Categorical and Categorical

Categorical and Categorical

```{r}	÷	•
diamonds%>%		
group_by(cut, color)%>%		
<pre>summarize(n=n())%&gt;%</pre>		
<pre>subset(select=c("cut","color","n"))%&gt;%</pre>		
spread(cut, n)		

color <ord></ord>	Fair <int></int>	Good <int></int>	Very Good	Premium	Ideal <int></int>
D	163	662	1513	1603	2834
E	224	933	2400	2337	3903
F	312	909	2164	2331	3826
G	314	871	2299	2924	4884
Н	303	702	1824	2360	3115
- I	175	522	1204	1428	2093
J	119	307	678	808	896



Categorical and Categorical

diamonds %>%
 count(color, cut) %>%
 ggplot(mapping = aes(x = color, y = cut)) +
 geom_tile(mapping = aes(fill = n))





### **Categorical and Categorical** ``{r} 윤 🎽 sum.diamond1=diamonds %>% group_by(color,cut) %>% summarize(n=n()) %>% mutate(prop=n/sum(n)) head(sum.diamond1,2) $\approx$ $\times$ color cut cdbl> n <ord> <int> <ord> 0.02405904 Fair 163 D 0.09771218 Good 662 D sum(sum.diamond1\$n) [1] 53940 > (sum.diamond1\$n/sum(sum.diamond1\$n))[1:2] [1] 0.003021876 0.012272896 > sum(sum.diamond1\$prop) [1] 7



### **Categorical and Categorical** ``{r} sum.diamond2=diamonds %>% group_by(color,cut) %>% summarize(n=n()) %>% ungroup() %>% mutate(prop=n/sum(n))head(sum.diamond2,2) $\approx$ $\times$ color cut n prop <ord> <ord> <int> Fair 163 0.003021876 D Good 662 0.012272896 D > sum(sum.diamond2\$n) [1] 53940 > (sum.diamond2\$n/sum(sum.diamond2\$n))[1:2] [1] 0.003021876 0.012272896 > sum(sum.diamond2\$prop) [1] 1



### Categorical and Categorical



























# Disperse and Make Reasonable Decisions