

Factors

Introduction

- Joyfully Read Chapter 12
- Additional Package
 - > library(forcats)
 - Not Part of the tidyverse
- For Variables with,
 - Fixed Set of Values
 - Known Set of Values
- Sophisticated Character Vector
- Factors Are on a
 New Level

- Eye Color Distribution
 - Randomly Sample 50 People
 - Distribution via Bar Plot

• How to Make More Informative?

- Eye Color Distribution (Cont.)
 - Display Eye Colors Absent From Sample

- Survey Results
 - How Would You Describe
 Dr. Mario's Teaching?
 - Magical
 - Alright
 - Regular
 - Inferior
 - Offensive
 - Class of 80 Students Answer End-of-the-Year Survey

• Survey Results (Cont.)

• Distribution of Results

• What is Wrong?

- Survey Results (Cont.)
 - Misspelling "Offensive" is
 Offensive
 - Ordinal Categorical Variable

- Urbanicity
 - Classification {1,2,3,4}
 - Sample 1000 Households and Record Their Urbanicity

What Would Make this Better?

- Urbanicity
 - Data Dictionary
 - 1 = Metropolitan
 - 2 = Burbs
 - 3 = Rural
 - 4 = Isolated

• Factor Variables Have Levels

Height = c("Tall", "Short", "Tall", "Tall", "Short", "Medium", "Short", "Medium", "Tall") Height.fct = as.factor(Height) print(Height) ## [1] "Tall" "Short" "Tall" "Tall" "Short" "Medium" "Short" "Medium" ## [9] "Tall" levels(Height) ## NULL print(Height.fct) ## [1] Tall Short Tall Tall Short Medium Short Medium Tall ## Levels: Medium Short Tall levels(Height.fct) [1] "Medium" "Short" "Tall"

Default: Alphabetical

• Level Order May Be Specified

Height2.fct = factor(Height,levels=c("Short", "Medium", "Tall"))
levels(Height2.fct)

[1] "Short" "Medium" "Tall"

print(Height2.fct)

[1] Tall Short Tall Tall Short Medium Short Medium Tall
Levels: Short Medium Tall

• Levels May Be Labeled

[1] "S" "M" "T"

print(Height3.fct)

[1] T S T T S M S M T ## Levels: S M T

levels(Height4.fct)

[1] "Short" "Not Short"

print(Height4.fct)

[1] Not Short Short Not Short Not Short Short Short Short

[8] Not Short Not Short
Levels: Short Not Short

Graphic Comparison

Graphic Comparison

Graphic Comparison

Graphic Comparison

ggplot(data=tibble(x=Height4.fct)) +
geom_bar(aes(x),fill="lightskyblue1") +
theme_minimal()

Level 3: General Social Survey

University of Chicago

About the GSS

The General Social Survey

Since 1972, the General Social Survey (GSS) has provided politicians, policymakers, and scholars with a clear and unbiased perspective on what Americans think and feel about such issues as national spending priorities, crime and punishment, intergroup relations, and confidence in institutions.

About the GSS

Level 3: General Social Survey

Sample Provided in forcats

Social=gss_cat glimpse(Social)

Observations: 21,483
Variables: 9
\$ year <int> 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, ...
\$ marital <fct> Never married, Divorced, Widowed, Never married, Divor...
\$ age <int> 26, 48, 67, 39, 25, 25, 36, 44, 44, 47, 53, 52, 52, 51...
\$ race <fct> White, White, White, White, White, White, White, White, White...
\$ rincome <fct> \$8000 to 9999, \$8000 to 9999, Not applicable, Not appl...
\$ relig <fct> Ind,near rep, Not str republican, Independent, Ind,nea...
\$ relig <fct> Protestant, Protestant, Protestant, Orthodox-christian...
\$ tvhours <int> 12, NA, 2, 4, 1, NA, 3, NA, 0, 3, 2, NA, 1, NA, 1, 7, ...

- Factor Variables Included
 - Marital
 - Race
 - Income Range
 - Political Party
 - Religion
 - Denomination

• Summary by Race

<pre>race.summary = Social %>% group_by(race) %>% summarize(n=n(), avg.age=mean(age,na.rm=T), avg.tv=mean(tvhours,na.rm=T)</pre>						
race.summary						
<pre>## # A tibble: 3 x 4 ## race n avg.age ## <fct> <int> <dbl> ## 1 Other 1959 39.5 ## 2 Black 3129 43.9 ## 3 White 16395 48.7</dbl></int></fct></pre>	avg.tv <dbl> 2.76 4.18 2.77</dbl>					
levels(Social\$race)						
## [1] "Other" "	'Black"	"White"	"Not applicable"			
<pre>levels(race.summary\$race)</pre>						
## [1] "Other" "	'Black"	"White"	"Not applicable"			

Comparing TV Hours

- fct_reorder()
 - f = Factor Variable
 - x = Numeric Vector
 - fun = Optional Function If Multiple Values of x for Each Value of f (Default: Median)

• Example 1: Reorder

• Example 2: Reorder

- Different Types of Ordering
 - Nominal = "Arbitrary"
 - Ordinal = "Principled"
- Example: Race vs Income
 - Race Levels are Arbitrary
 - Income Levels are Principled

head(Social[,c("race", "rincome")]) ## # A tibble: 6 x 2 ## race rincome ## <fct> <fct> ## 1 White \$8000 to 9999 ## 2 White \$8000 to 9999 ## 3 White Not applicable ## 4 White Not applicable ## 5 White Not applicable ## 6 White \$20000 - 24999 str(Social[,c("race", "rincome")]) ## Classes 'tbl df', 'tbl' and 'data.frame': 21483 obs. of 2 variables: ## \$ rincome: Factor w/ 16 levels "No answer","Don't know",...: 8 8 16 16 16 5 4 9 4 4 levels(Social\$race) "Not applicable" ## [1] "Other" "Black" "White" levels(Social\$rincome) ## [1] "No answer" "Don't know" "Refused" "\$25000 or more" [5] "\$20000 - 24999" "\$15000 - 19999" "\$10000 - 14999" "\$8000 to 9999" ## [9] "\$7000 to 7999" "\$6000 to 6999" "\$5000 to 5999" "\$4000 to 4999" ## ## [13] "\$3000 to 3999" "\$1000 to 2999" "Lt \$1000" "Not applicable"

- Other Useful Functions
 - fct_relevel() = Specify Variable and the Specific Levels You Want in The Front
 - fct_rev() = Specify Variable and Reverses the Level Order
 - fct_infreq() = Order Levels
 Based on Increasing
 Frequency
- Combine Functions as Necessary

Original Boxplot

ggplot(Social) +
 geom_boxplot(aes(x=rincome,y=tvhours)) +
 coord_flip() +
 theme_minimal()

• Example 1: Reverse Income

• Example 2: Level Change + Rev

- Purpose for Modifying Levels
 - Abbreviate or Better Names
 - Collapse Unimportant Levels
 - Group Categories
- Useful Functions
 - fct_recode() = Rename Levels
 - fct_collapse() = Collapse Levels
 - fct_lump() = Create Subgroups

Marital Counts

##	#	A tibble: 6 x	3	
##		marital	n	prop
##		<fct></fct>	<int></int>	<dbl></dbl>
##	1	No answer	17	0.000791
##	2	Never married	5416	0.252
##	3	Separated	743	0.0346
##	4	Divorced	3383	0.157
##	5	Widowed	1807	0.0841
##	6	Married	10117	0.471

• Example 1: Recode Levels

##	#	A tibble: 6 x	4		
##		marital	marital2	n	prop
##		<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>
##	1	No answer	Unknown	17	0.000791
##	2	Never married	Single	5416	0.252
##	3	Separated	Separated	743	0.0346
##	4	Divorced	Divorced	3383	0.157
##	5	Widowed	Widowed	1807	0.0841
##	6	Married	Married	10117	0.471

• Example 2: Collapse Levels

levels(Social\$marital) ## [1] "No answer" "Never married" "Separated" "Divorced" ## [5] "Widowed" "Married" Marriage3 = Social %>% mutate(marital2=fct collapse(marital, Alone = levels(marital) [c(2, 4, 5)], Together = levels(marital) [c(6)], Confused = levels(marital)[c(1,3)])) 응>응 group by(marital,marital2) %>% summarize(n=n()) %>% ungroup() %>% mutate(prop=n/sum(n)) print(Marriage3)

```
## # A tibble: 6 x 4
    marital marital2
                           n
##
                                prop
    <fct>
              <fct> <int>
                               <dbl>
##
## 1 No answer
               Confused
                          17 0.000791
## 2 Never married Alone 5416 0.252
## 3 Separated
               Confused 743 0.0346
## 4 Divorced
               Alone
                        3383 0.157
## 5 Widowed
                Alone
                        1807 0.0841
## 6 Married
                Together 10117 0.471
```


• Example 3: Lumping Levels

Marriage4 = Social %>%

mutate(marital2=fct_lump(marital)) %>%
count(marital,marital2) %>%
mutate(prop=n/sum(n))

print(Marriage4)

##	#	A tibble: 6 x	4		
##		marital	marital2	n	prop
##		<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>
##	1	No answer	Other	17	0.000791
##	2	Never married	Never married	5416	0.252
##	3	Separated	Other	743	0.0346
##	4	Divorced	Divorced	3383	0.157
##	5	Widowed	Other	1807	0.0841
##	6	Married	Married	10117	0.471

• Example 3: Lumping Levels

Marriage5 = Social %>%

mutate(marital2=fct_lump(marital,2)) %>%
count(marital,marital2) %>%
mutate(prop=n/sum(n))

print(Marriage5)

##	#	A tibble: 6 x	4		
##		marital	marital2	n	prop
##		<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>
##	1	No answer	Other	17	0.000791
##	2	Never married	Never married	5416	0.252
##	3	Separated	Other	743	0.0346
##	4	Divorced	Other	3383	0.157
##	5	Widowed	Other	1807	0.0841
##	6	Married	Married	10117	0.471

Level 6: Numeric to Factor

- Cut Function
 - Convert Numeric to Factor
 - Syntax

> cut(VARIABLE, # of Breaks)

• Useful In Visuals and Summary

• Example 1: New Age Variable

<pre>NewAge = Social %>% mutate(new.age=cut(age,3))</pre>
tr(NewAge)
<pre></pre>

levels(NewAge\$new.age)

[1] "(17.9,41.7]" "(41.7,65.3]" "(65.3,89.1]"

Level 6: Numeric to Factor

• Example 2: Make It Pretty

Level 6: Numeric to Factor

- Example 4: Using Percentiles
 - Goal: Cut on the Quartiles
 - Use Quantile Function

NewAge = Social %>% mutate(new.age=cut(age, quantile(Social\$age,c(0,0.25,0.5,0.75,1),na.rm=T)))				
<pre>levels(NewAge\$new.age)</pre>				
[1] "(18,33]" "(33,46]" "(46,59]" "(59,89]"	<i>ā</i>			

Helpful Package > library(expss)

cro_cases(NewAge\$age,list(NewAge\$marital,total()))

	Marital Status						#Total
	No answer	Never married	Separated	Divorced	Widowed	Married	
Age							
(17.9,35.8]	1	3490	197	413	26	2241	6368
(35.8,53.5]	5	1364	350	1546	156	4175	7596
(53.5,71.2]	3	462	163	1169	578	2817	5192
(71.2,89.1]	1	86	31	236	1040	857	2251
#Total cases	10	5402	741	3364	1800	10090	21407

Disperse and Make Reasonable Decisions