

Modeling II

Introduction

Instructions

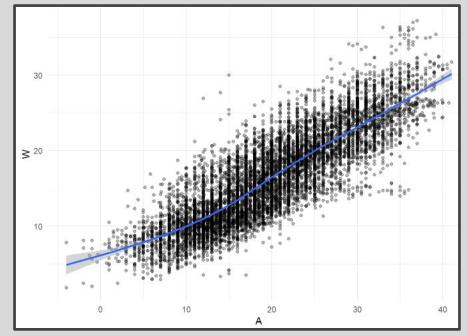
- Download Supplement Zip
- Unzip Folder
- Required Packages
 - library(tidyverse)
 - library(modelr)
- Open .Rmd File and Knit
- Daily Spanish River Data
 - W = Max Water Temperature
 - A = Max Air Temperature
 - L = River Identifier (31 Rivers)

Introduction

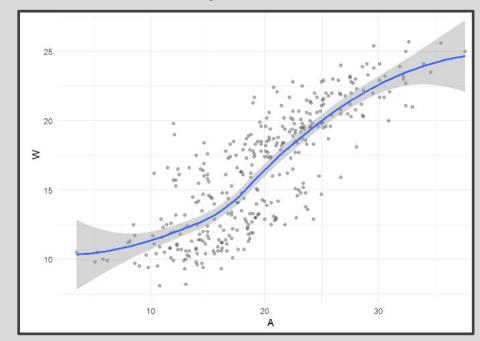
- Questions About RMarkdown
 - What Does the Following Code
 Do When Knitted?

`r length(unique(DATA\$L))`

 What Does the following Code Chunk Option Do When Knitted?


Introduction

- Goal: Build a Model to Predict Max
 Water Temp Given Max Air Temp
 - What Do You Know About the Relationship of These Variables?
 - Who Would Care About this Relationship?
 - Why Would Someone Want to Predict the Max Water Temp?
 - Why Would this Model Be
 Useful?

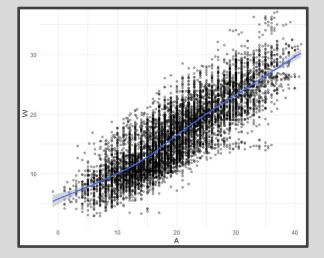

- Run Chunk 1
 - What Do You Notice About the Overall Relationship?

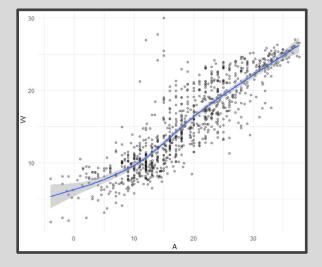
- Do You Think This Relationship is the Same for All Locations?
- Why? message=F

- Run Chunk 2
 - Location is a Numeric Variable
 - What Do You Notice About the Relationship for L==103?

• What do You Notice Now?

- Chunk 2 Modified
 - Modify Chunk 2 to Create a Function Called WAPlot.func With 1 Argument Location
 - Function Usage: You Specify the Location as an Integer and the Function Outputs a Figure of the Relationship
 - Use Your Function For Three
 Different Locations
 - Knit the Document to Observe
 and Compare


- Chunk 2 Discussion
 - What are the Differences in the Relationship Between W and A for the Various Locations?
 - Why do You Think These Differences Exist?
 - How do You Suggest We Handle the Differences?


- Chunk 3
 - Randomly Samples 3 Locations
 - Plant Your Seed and Run Code
 - Usage:
 - anti_join()
 - semi_join()
 - Why Don't We Handpick the Three Locations?

- Run Chunk 4
 - Train Plot

Test Plot

Part 2: Linear Model

Linear Model

 $W = a + bA + \varepsilon$

- Simplest Relationship that is Easily Explained
- For every 1 Degree Change in A, W changes by *b* Degrees
- When A=0 Degrees, the Expected Water Temperature is a Degrees

Part 2: Linear Model

Run Chunk 1

- Fits Linear Model to Train Data
- What is Your Intercept?
- What is Your Slope?
- Run Chunk 2
 - Saves Predictions to Train/Test add_predictions(MODEL,var="NAME")
- Run Chunk 3
 - Saves Residuals to Train/Test add_residuals(MODEL,var="NAME")

Polynomial Model

 $W = a + b_1 A + b_2 A^2 + \dots + b_k A^k + \varepsilon$

- "Feature Engineering"
- Generalized Additive Model
- Geom_smooth() Fits a GAM when Fitting a Curve
- Useful for Approximating
 Nonlinear Relationships
- Dependent on Degree "k"
- Goal: Choose Best "k"

- Formula Object in R
 - Special NotationHelpful Table:

Symbol	Example	Meaning
+	+X	include this variable
-	-X	delete this variable
:	X:Z	include the interaction between these variables
*	X*Y	include these variables and the interactions between them
1	X Z	conditioning: include x given z
^	$(X + Z + W)^{3}$	include these variables and all interactions up to three way
I	I(X*Z)	as is: include a new variable consisting of these variables multiplied
1	X - 1	intercept: delete the intercept (regress through the origin)

 We will Use the I() Function to Create New Variables Based Off Variables We Have

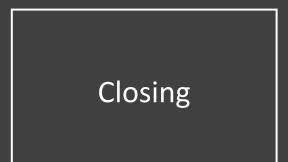
• Run Chunk 1

- Fits 2nd Degree Polynomial
- Fits 3rd Degree Polynomial
- Fits 4th Degree Polynomial
- Run Chunk 2
 - Obtains Predictions Under the Different Polynomial Models

Chunk 3

- Code Needs Modification
- Highlight Code

TRAIN4 =TRAIN3 %>%


add_predictions(poly2mod,var="poly2pred") %>%
add_predictions(poly3mod,var="poly3pred") %>%
add_predictions(poly4mod,var="poly4pred")

TEST4 =TEST3 %>%
 add_predictions(poly2mod,var="poly2pred") %>%
 add_predictions(poly3mod,var="poly3pred") %>%
 add_predictions(poly4mod,var="poly4pred")

- TRAIN3 -> TRAIN4 and etc.
- Use Ctrl+F (Find and Replace)
 - 'predictions' -> 'residuals'
 - 'pred' -> 'res'

Q predictions	Next Prev All	residuals	Replace All
✓ In selection	Whole word Regex	🗹 Wrap	

Run Chunk 3 After Modifying

Disperse and Make Reasonable Decisions