

Modeling III

Introduction

Instructions

- Download Supplement
- Unzip Folder
- Required Packages
 - library(tidyverse)
 - library(modelr)
 - library(xtable)
- Open .Rmd File and Knit
- Within R, Run all Code Chunks for Parts 1,2, and 3 (This was Covered in Previous Lecture)

Logistic Model

$$W = l + \frac{h}{1 + e^{a - bA}} + \varepsilon$$

- "Smart" Model Based On Physical Relationship Between A and W
- Four Parameters
 - Controls the Shape of the Relationship
 - *l* and *h*
 - *a* and *b*
- What Shape Do You Think This Function Makes?
 - Idea: Precalculus

- Run Chunk 1
 - Plant that Seed
 - Example Model

- Parameter Investigation
 - What Does 7 Represent?
 - What Does 12 Represent?
 - What Does 4 Represent?
 - What Does 1 Represent?

- Run Chunk 2
 - Creation of Modeling Function
 - Creation of MSE Function
 Specific to this Model
- Run Chunk 3
 - Use optim() Function With Smart Starting Values Based on Understanding of The Model
 - Finds Estimates Based on Minimization of MSE

- Run Chunk 4
 - Use Logistic Model Function and Estimated Parameters from optim() to Obtain
 - Predictions
 - Residuals

Intermission

- Run Code Chunk
 - save.image() = Used to Save Workspace into .Rdata File
 - load() = Used to Load
 Workspace from .Rdata File
 - .Rdata = File Extension of R
 Workspace File (All Objects in Global Environment)

- Run Chunk 1
 - Plots of Different Models
 - What Can We Say About the Different Models?

• Which Model Would You Use?

- Run Chunk 2
 - Comparing Predictions vs Actual Maximum Water Temperatures
 - Models Give Similar Predictions

- Run Chunk 3
 - Shows Residuals Under the 4
 Models Plotted Over Time
 - What is the Problem?

- Run Chunk 4
 - Evaluate Models For the Three Locations Separately

- Run Chunk 5
 - Evaluate Error For the Three Locations Separately (by A)

- Run Chunk 6
 - Evaluate Error For the Three Locations Separately (by Time)

Run Chunk 1

- Mean Bias MB = $\frac{1}{N} \sum \hat{\varepsilon}_k$
- Mean Absolute Error MAE = $\frac{1}{N} \sum |\hat{\varepsilon}_k|$
- Root Mean Squared Error

$$\text{RMSE} = \sqrt{\frac{1}{N} \sum \hat{\varepsilon}_k^2}$$

 MB, MAE, and RMSE are in Degrees Celsius

- Summarizing Table
 - Evaluate MB, MAE, and RMSE on Test Data to Choose Best Model Going Forward

Sketch of Table We Want

Model	MB	MAE	RMSE
Linear			
Poly(2)			
Poly(3)			
Poly(4)			
Logistic			

 Before Writing Code, Have a Plan for the Output

Chunk 2

- Run Line-By-Line
- Think About Ways to Quickly Apply All 3 Functions to All Residuals
- Run Chunk 3
 - Combine rename(), gather(), group_by(), and summarize()
- Chunk 4
 - Change eval=F to eval=T and Knit the File (What is Seen?)

•	My	Results	Based	on	My	Seed
---	----	---------	-------	----	----	------

	Model	MB	MAE	RMSE
L	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	Linear	0.953	2.75	3.35
2	Poly(2)	0.974	2.73	3.34
3	Poly(3)	0.990	2.71	3.33
4	Poly(4)	0.992	2.72	3.34
5	Logistic	0.786	2.68	3.29

Simple Model that Adequately
 Predicts

Results="asis"

Model	MB	MAE	RMSE
Linear	0.9534	2.7503	3.3516
Poly(2)	0.9742	2.7324	3.3449
Poly(3)	0.9904	2.7068	3.3289
Poly(4)	0.9920	2.7154	3.3387
Logistic	0.7856	2.6764	3.2917

Disperse and Make Reasonable Decisions