

Modeling VI

Introduction

- Now We Consider
 - Categorical Response Variables
 - Numerical/Categorical Explanatory Variables
- Focus is on Classification
- Bless Your Soul with Ch 4 in ISLR

Introduction

- Basic Case: Binary Response
 - Variable Has Two Possible
 Outcomes
 - Typically, Yes or No Responses to a Question
 - Example
 - Y = Do You Enjoy Your Experience in the Presence of the Doctor?
 - Y = Did You Pass Your STOR 320 Class?
 - Y = Are You Comfortable Having Your Mind Blown?

Scenario

- Question: Are Students Who Get Good Grades in STOR 320 Less Likely to Recommend This Class To an Enemy?
 - Y = Would You Recommend STOR 320 to an Enemy?
 - X = Grade in STOR 320
- Why is Linear Regression Inappropriate?

Model Construction

Bernouilli Random Variable

$$Y = \begin{cases} 1 & if Yes \\ 0 & if No \end{cases}$$
$$p = E(Y) = P(Y = 1)$$

• Sample *n* Students $Y' = \sum Y_i \sim Binomial(n, p)$ $\widehat{p} = \frac{\sum y_i}{n}$

Estimated Probability that a Student Would Recommend Class to an Enemy Based on a Sample

• Analyze the Effect of X on p $p = E(Y|X) \neq \beta_0 + \beta_1 X$

Model Construction

- Modeling the Mean
 - Logit Link Function

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X$$

Odds of
Recommending
STOR 320

- Understanding Odds
 - Odds of Recommending = 1
 - Odds of Recommending < 1
 - Odds of Recommending > 1

Model Construction

• Solving for $\frac{p}{1-p}$

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X$$

$$\frac{p}{1-p} = e^{\beta_0 + \beta_1 X} \quad \blacksquare$$
Odds of Recommending
STOR 320 Given the
Student's Grade
Solving for p
$$p = e^{\beta_0 + \beta_1 X} - pe^{\beta_0 + \beta_1 X}$$

$$p(1 + e^{\beta_0 + \beta_1 X}) = e^{\beta_0 + \beta_1 X}$$

$$p = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}} \quad \blacksquare$$

Probability a Student Will Recommend STOR 320 Given the Student's Grade

Logistic Regression for Classification

• Recall:
$$Y = \begin{cases} 1 & if Yes \\ 0 & if No \end{cases}$$

After Getting Data, We Estimate
 β₀

•
$$\hat{\beta}_1$$

• $\hat{p} = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}}$

Estimated Probability a Student Recommends Course Given the Student's Grade

Two Scenarios

•
$$\hat{p} < 0.5 \implies \hat{Y} = 0$$

•
$$\hat{p} > 0.5 \implies \hat{Y} = 1$$

Evaluating the Logistic Regression Model

- Two Methods
 - Leave Out Data Intentionally
 - Use Cross-Validation
- Positives and Negatives
 - True Positive = Predicted a Recommendation and the Student Recommended
 - False Positive=Predicted a Recommendation and the Student Didn't Recommend
 - False Negative = Predicted a Student Wouldn't Recommend and They Did Recommend
 - True Negative = Predicted a Student Wouldn't Recommend and They Didn't Recommend

Evaluating the Logistic Regression Model

Confusion Matrix

	Predicted				
Actual	Will Recommend	Won't Recommend			
Recommends	<i>n</i> ₁₁	n ₁₂			
Doesn't Recommend	n ₂₁	n ₂₂			

- Sensitivity:
 - $n_{11}/(n_{11}+n_{12})$
- Specificity:

 $n_{22}/(n_{21}+n_{22})$

- False Positive Rate: $n_{21}/(n_{21} + n_{22})$
- False Negative Rate: $n_{12}/(n_{11} + n_{12})$

Titanic Survival Data

> library(titanic)

- Response Variable $Y = \begin{cases} 1 & if \ Survived \\ 0 & if \ Did \ Not \ Survive \end{cases}$
- Explanatory Variables
 - Passenger Class
 - Sex
 - Age
 - Siblings/Spouses Aboard
 - Parents/Children Aboard
 - Passenger Fare
 - Port of Embarkation

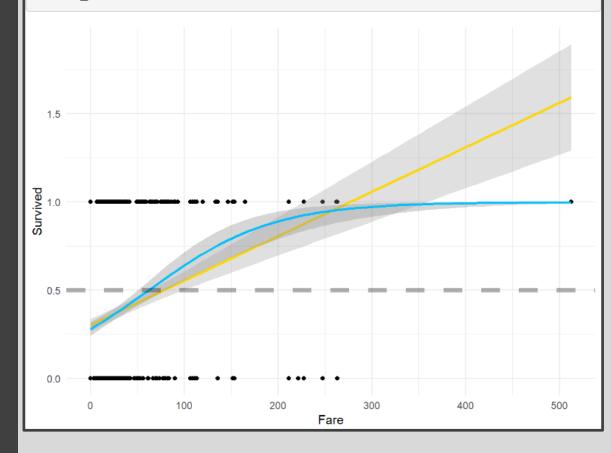
- Titanic Survival Data (Continued)
 - Selecting Variables of Interest
 - > TRAIN=titanic_train[,c(2,3,5,6,7,8,10,12)]
 > TEST=titanic_test[,c(2,4,5,6,7,9,11)])

• Glimpse of Data

glimpse(TRAIN)
<pre>## Observations: 891 ## Variables: 8 ## \$ Survived <int> 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, ## \$ Pclass <int> 3, 1, 3, 1, 3, 3, 1, 3, 3, 2, 3, 1, 3, 3, 3, 2, 3, 2, ## \$ Sex <chr> "male", "female", "female", "female", "male", "male", "male", ## \$ Age <dbl> 22, 38, 26, 35, 35, NA, 54, 2, 27, 14, 4, 58, 20, 39, ## \$ SibSp <int> 1, 1, 0, 1, 0, 0, 0, 3, 0, 1, 1, 0, 0, 1, 0, 0, 4, 0, ## \$ Parch <int> 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 5, 0, 0, 1, 0, ## \$ Fare <dbl> 7.2500, 71.2833, 7.9250, 53.1000, 8.0500, 8.4583, 51 ## \$ Embarked <chr> "s", "C", "s", "s", "Q", "s", "s", "s", "c", "s"</chr></dbl></int></int></dbl></chr></int></int></pre>
glimpse(TEST) Problem?
<pre>## Observations: 418 ## Variables: 7 ## \$ Pclass <int> 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 1, 1, 2, 1, 2, 2, 3,</int></pre>
<pre>## \$ Sex <chr> "male", "female", "male", "female", "male", "male", "male", "male", "male", " ## \$ Age <dbl> 34.5, 47.0, 62.0, 27.0, 22.0, 14.0, 30.0, 26.0, 18.0, ## \$ Sibsp <int> 0, 1, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 1, 1, 1, 0, 0,</int></dbl></chr></pre>
<pre>## \$ Parch <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ## \$ Fare <dbl> 7.8292, 7.0000, 9.6875, 8.6625, 12.2875, 9.2250, 7.62 ## \$ Embarked <chr> "Q", "S", "Q", "S", "S", "S", "Q", "S", "C", "S", "S"</chr></dbl></int></pre>

Pause For Lyrics

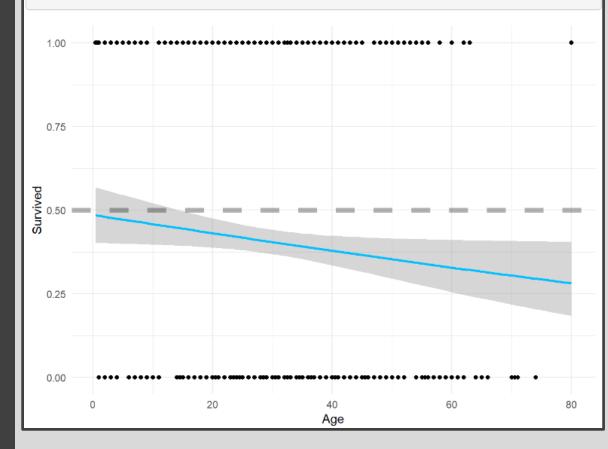
Every night in my dreams I see you, I feel you That is how I know you go on



• Visualizing the Data

ggplot(TRAIN) + geom_point(aes(x=Fare,y=Survived)) + theme_minimal() +
geom_smooth(aes(x=Fare,y=Survived),method="lm",alpha=0.3,color="gold") +
geom_smooth(aes(x=Fare,y=Survived),method="glm",

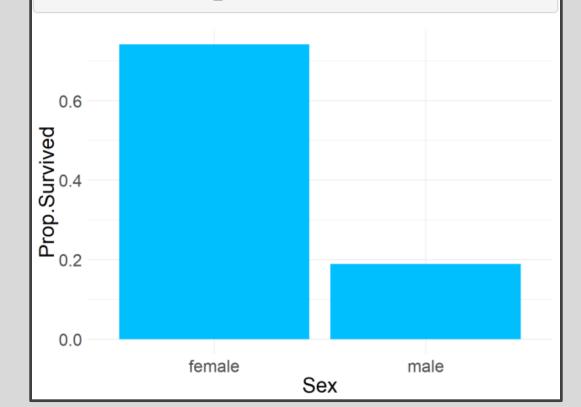
method.args=list(family="binomial"),color="deepskyblue1") +


geom_hline(yintercept=0.5, linetype="dashed", size=2, alpha=0.3)

• Visualizing the Data (Continued)

ggplot(TRAIN) + geom_point(aes(x=Age,y=Survived)) + theme_minimal() +
geom_smooth(aes(x=Age,y=Survived),method="glm",

method.args=list(family="binomial"),color="deepskyblue1") +
geom hline(yintercept=0.5,linetype="dashed",size=2,alpha=0.3)


l Won't Go Down With This Ship


• Visualizing the Data (Continued)

TRAIN %>% mutate(Sex=factor(Sex)) %>% group_by(Sex) %>% summarize(Prop.Survived=mean(Survived)) %>% ggplot() + geom_bar(aes(x=Sex,y=Prop.Survived), stat="Identity",fill="deepskyblue1") + theme_minimal() + theme(text=element text(size=20))

Pause For Lyrics

Far across the distance And spaces between us You have come to show you go on

- Logistic Regression Models
 - Split Training Set Up
- - c("Survived","Fare","Sex","Age")]
 - > TRAIN.OUT=TRAIN[-sample.in,

c("Survived","Fare","Sex","Age")]

 Modeling the Probability of Survival Given the Ticket Fare, the Sex of the Passenger, and the Age of the Passenger

• Logistic Regression Models (Cont.)

Including 3-Way Interaction

logmod1=glm(Survived~.^3,family="binomial",data=TRAIN.IN)
tidy(logmod1)[,c("term","estimate","p.value")]

##	#	A tibble: 8 x 3		
##		term	estimate	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	0.959	0.0719
##	2	Fare	-0.0132	0.357
##	3	Sexmale	-1.54	0.0182
##	4	Age	-0.0362	0.0745
##	5	Fare:Sexmale	0.0180	0.255
##	6	Fare:Age	0.00177	0.00684
##	7	Sexmale:Age	-0.000359	0.988
##	8	<pre>Fare:Sexmale:Age</pre>	-0.00168	0.0140

• Logistic Regression Models (Cont.)

Only 2-Way Interactions

logmod2=glm(Survived~.*.,family="binomial",data=TRAIN.IN)
tidy(logmod2)[,c("term","estimate","p.value")]

#	#	#	A tibble: 7 x	к 3	
#	#		term	estimate	p.value
#	#		<chr></chr>	<dbl></dbl>	<dbl></dbl>
#	#	1	(Intercept)	0.0835	0.846
#	#	2	Fare	0.0202	0.0459
#	#	3	Sexmale	-0.472	0.355
#	#	4	Age	0.00244	0.858
#	#	5	Fare:Sexmale	-0.0204	0.0225
#	#	6	Fare:Age	0.000255	0.188
#	#	7	Sexmale:Age	-0.0456	0.00482

• Logistic Regression Models (Cont.)


No Way Interactions

logmod3=glm(Survived~.,family="binomial",data=TRAIN.IN)
tidy(logmod3)[,c("term","estimate","p.value")]

##	#	A tibble: 4	х З	
##		term	estimate	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	1.03	1.42e- 4
##	2	Fare	0.0117	2.23e- 5
##	3	Sexmale	-2.32	6.58e-28
##	4	Age	-0.0157	2.87e- 2

Pause For Lyrics

Near, far, wherever you are I believe that the heart does go on

Getting Predictions

TRAIN.OUT2 = TRAIN.OUT %>%

head(TRAIN.OUT2,15)

		~	1	0	2	~ 1	~ ~	~ ~	
##		Survived	pl	p2	1	S1	S2	53	
##	1	1	0.9690919	0.9092749	0.7802745	1	1	1	
##	2	1	0.7754082	0.7600334	0.6058744	1	1	1	
##	3	1	0.2080353	0.2054202	0.2124202	0	0	0	
##	4	0	0.6660041	0.6390900	0.7598035	1	1	1	
##	5	0	NA	NA	NA	NA	NA	NA	
##	6	1	NA	NA	NA	NA	NA	NA	vvny?
##	7	0	0.5144529	0.6150895	0.6255526	1	1	1	
##	8	0	NA	NA	NA	NA	NA	NA	
##	9	0	0.3504463	0.3477779	0.2826244	0	0	0	
##	10	0	0.2084528	0.2141609	0.1755685	0	0	0	
##	11	0	0.3588175	0.3684181	0.2646063	0	0	0	
##	12	0	0.2278485	0.2365545	0.1841222	0	0	0	
##	13	0	0.1588185	0.1560858	0.1590190	0	0	0	
##	14	1	0.2135621	0.2103355	0.2445736	0	0	0	
##	15	1	NA	NA	NA	NA	NA	NA	

• Getting Predictions

TRAIN.OUT3=na.omit(TRAIN.OUT2)
head(TRAIN.OUT3,20)

##		Survived	p1	p2	p3	s1	S 2	S 3	
##	1	1	0.9690919	0.9092749	0.7802745	1	1	1	
##	2	1	0.7754082	0.7600334	0.6058744	1	1	1	
##	3	1	0.2080353	0.2054202	0.2124202	0	0	0	
##	4	0	0.6660041	0.6390900	0.7598035	1	1	1	
##	7	0	0.5144529	0.6150895	0.6255526	1	1	1	
##	9	0	0.3504463	0.3477779	0.2826244	0	0	0	
##	10	0	0.2084528	0.2141609	0.1755685	0	0	0	
## [: mean	## 10 0 0.2084528 0.2141609 0.1755685 0 0 0 mean (TRAIN.OUT3\$\$1==TRAIN.OUT3\$\$2)								
				•				-	

What Do You Notice About the Predictions?

• Getting Predictions

TRAIN.OUT4=TRAIN.OUT3 %>% select(-p2,-S2)
head(TRAIN.OUT4,8)

##		Survived	p1	pЗ	S1	S 3	
##	1	1	0.9690919	0.7802745	1	1	
##	2	1	0.7754082	0.6058744	1	1	
##	3	1	0.2080353	0.2124202	0	0	
##	4	0	0.6660041	0.7598035	1	1	
##	7	0	0.5144529	0.6255526	1	1	
##	9	0	0.3504463	0.2826244	0	0	
##	10	0	0.2084528	0.1755685	0	0	
##	11	0	0.3588175	0.2646063	0	0	

Where Do You See Error?

Pause For Lyrics

Once more you open the door And you're here in my heart And my heart will go on and on

Evaluating Results •

Helpful Modifications •

<pre>TRAIN.OUT5 = TRAIN.OUT4 %>% select(-p1,-p3) %>% mutate(Survived=factor(Survived),S1=factor(S1),S3=factor(S3)) %>% mutate(Survived=fct_recode(Survived, "Survived"="1", "Died"="0"), S1=fct_recode(S1, "Will Survive"="1", "Will Die"="0"), S3=fct_recode(S3, "Will Survive"="1", "Will Die"="0")) %>% mutate(Survived=factor(Survived, levels=c("Survived", "Died")), S1=factor(S1, levels=c("Will Survive", "Will Die")), S3=factor(S3, levels=c("Will Survive", "Will Die")))</pre>						
head(TRAIN.OUT	:5)					
## Survived	S1	S 3				
## 1 Survived	Will Survive W	Will Survive				
## 2 Survived	Will Survive W	Will Survive				
## 3 Survived	Will Die	Will Die				
## 4 Died	Will Survive W	Will Survive				
## 5 Died	Will Survive W	Will Survive				
## 6 Died	Will Die	Will Die				

- Evaluating Results (Continued)
 - Confusion Matrix
 Including 3-Way Interactions

RESULTS1=table(TRAIN.OUT5\$Survived,TRAIN.OUT5\$S1) %>% prop.table() print(RESULTS1)						
## ## ## Surv ## Died	Will Survive Will Die rived 0.32867133 0.13986014 0.07692308 0.45454545					

• No Way Interactions

RESULTS3=table(TRAIN.OUT5\$Survived,TRAIN.OUT5\$S3) %>% prop.table() print(RESULTS3)						
## ## ##		Will Survive 0.33566434				

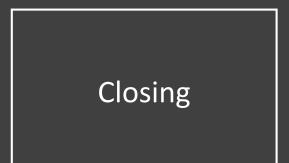
0.07692308 0.45454545

##

Died

- Evaluating Results (Continued)
 - Error Statistics

Code


ERROR.RESULTS = tibble(

```
Model=c("3 Way", "No Way"),
Sensitivity=c(RESULTS1[1,1]/sum(RESULTS1[1,]), RESULTS3[1,1]/sum(RESULTS3[1,])),
Specificity=c(RESULTS1[2,2]/sum(RESULTS1[2,]), RESULTS3[2,2]/sum(RESULTS3[2,])),
FPR=c(RESULTS1[2,1]/sum(RESULTS1[2,]), RESULTS3[2,1]/sum(RESULTS3[2,])),
FNR=c(RESULTS1[1,2]/sum(RESULTS1[1,]), RESULTS3[1,2]/sum(RESULTS3[1,]))
```

print(ERROR.RESULTS)

• Results

Model	Sensitivity	Specificity	FPR	FNR
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
3 Way	0.701	0.855	0.145	0.299
No Way	0.716	0.855	0.145	0.284

Disperse and Make Reasonable Decisions