

Modeling VIII

Introduction

• Big Data

- Large Sample Size
- Large Number of Variables
- Traditional Methods are Difficult to Implement
- Depends on the Available
 Technology
- Goal: Explore Approaches for Quick Filtering of Predictors
- Supplement
 - Download Rmd
 - Install Package > library(glmnet)
 - Knit the Document
 - Read the Introduction

Introduction

Ny Data is Bigger than Your Data

Linear Model

- Consider the Following: $y_i = \beta_0 + X_{1i}\beta_1 + ... + X_{pi}\beta_p + \epsilon_i$ where i = 1, 2, 3, ..., n
 - Matrix Representation $\mathbf{y} = \beta_0 + \mathbf{X}\mathbf{\beta} + \mathbf{\epsilon}$ where $\mathbf{y} = [y_1, y_2, \dots, y_n]',$ $\mathbf{\beta} = [\beta_1, \beta_2, \dots, \beta_p]',$ $\mathbf{\epsilon} = [\epsilon_1, \epsilon_2, \dots, \epsilon_n]',$

and

$$\mathbf{X} = \begin{bmatrix} X_{11} & X_{21} & \dots & X_{p1} \\ X_{12} & X_{22} & \dots & X_{p2} \\ \vdots & \vdots & \ddots & \vdots \\ X_{1n} & X_{2n} & \cdots & X_{pn} \end{bmatrix}$$

Linear Model

Information About Model Matrix

$$\mathbf{X} = \begin{bmatrix} X_{11} & X_{21} & \dots & X_{p1} \\ X_{12} & X_{22} & \dots & X_{p2} \\ \vdots & \vdots & \ddots & \vdots \\ X_{1n} & X_{2n} & \cdots & X_{pn} \end{bmatrix}$$

This Matrix Should Be Standardized

- Once Standardized, The Intercept β_0 is Unnecessary in the Model
- For Interpretability, the Response Vector *y* Can Also Be Standardized

Run Chunk 1

- Simulating Response From a Linear Model
- All Predictor Variables in X are Standardized > rnorm()
- What is n?
- What is p?
- What do We Know About the True Signal We Want to Detect?

• Run Chunk 2

- Fitting Naïve Linear Model
- Obtaining Confidence Intervals
 for Parameters > confint(Im.model)
- Figure Info
 - Show the Estimated
 Coefficients of Linear Model
 - Show Confidence Intervals
 for These Coefficients
 - What Does the Color Aesthetic Being Used For?

- Chunk 2 (Continued)
 - Knit the Document and Observe the 3 Graphics
 - Figure 1

Chunk 2 (Continued)Figure 2

• What is the Problem?

Chunk 2 (Continued)Figure 3

• What is the Problem?

- Run Chunk 3
 - Regression for Each Predictor

Obtaining P-Values

```
> summary(individual.mod)
```

```
Call:
lm(formula = y \sim ., data = SIM.DATA[, c(1, j + 1)])
Residuals:
            10 Median
   Min
                            3Q
                                   Max
-47.252 -11.318 0.035 10.759 45.336
                                                  Save
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1258
                        0.7021
                                 0.179
                                          0.858
x.200
            -0.3201
                        0.7230 -0.443
                                          0.658
Residual standard error: 15.66 on 498 degrees of freedom
Multiple R-squared: 0.0003934, Adjusted R-squared:
                                                   -0.001614
F-statistic: 0.196 on 1 and 498 DF, p-value: 0.6582
```


- Run Chunk 3
 - Figure Plots P-Values Against Coefficients

- Run Chunk 3
 - Suppose We Were to Keep Only the Predictor Variables that Had P-Values<0.01
 - Observe the Table

	P-Val > 0.01	P-Val < 0.01	
Non-Zero	1%	4%	
Zero	94%	1%	_

- 95% of Variables Ignored
- 5% of Variables Included
- Errors (What is Worse?)
 - We Will Ignore Variables
 that Are Important
 - We Will Include Variables
 that Are Irrelevant

Chunk 4

- Try to Find the Smallest Cutoff Value So That We are Not Missing Important Variables
- To Ensure We are Not Missing Important Variables, Should we Increase or Decrease the Original Cutoff (0.01)
- What Cutoff Works?
- Try Multiple Cutoffs and Observe the Table
- Run the Code Inside the Chunk Until All 10 Important Variables are Retained for the Future

- Chunk 4 (Continued)
 - Traditional Choice: 0.20
 - Output in Table

	P-Val > 0.01	P-Val < 0.01
Non-Zero	0%	5%
Zero	71%	24%

None of the Non-Zero Parameters Will Be Ignored

• Fit Linear Model for Variables Kept in Consideration

> lm(y~.,data=SIM.DATA[,c(1,which(KEEP)+1)])

- Chunk 4 (Continued)
 - Suppose Cutoff is 0.2
 - Figure 1

Chunk 4 (Continued)Figure 2

Chunk 4 (Continued)Figure 2

- Recap
 - Before Building Complex Models We are Performing a Simple Screening Procedure
 - Quick and Logical Approach
 - Problems
 - We May Lose Variables with Significant Interactions
 - We May Still Have Too Many
 - We May Retain Variables
 that are Highly Correlated
- Other Approach: Fit Full Model and Retain Variables with Sufficiently Small P-Values (<0.2)

- Classic Linear Model Estimation
 - Minimize Sum of Squared Error

$$SSE = \sum [y_i - (\beta_0 + x_i' \boldsymbol{\beta})]^2$$

- Optimization: Find $\widehat{\beta_0}$ and $\widehat{\beta}$ that Make SSE as Small as Possible
- $\widehat{\beta_0}$ and $\widehat{\beta}$ are Easily Found Using Matrix Representation
- Regularized Estimation
 - Produces Biased Estimates
 - Shrinks Coefficients Toward 0
 - Favors Smaller Models
 - May Lead to a Better Model for Out-of-Sample Prediction

Three Popular Methods
 Download R Package
 > library(glmnet)

• Penalized SSE $PSSE = SSE + \lambda[(1 - \alpha)\sum_{i=1}^{p}\beta_i^2 + \alpha\sum_{i=1}^{p}|\beta_i|]$

- Variations
 - Ridge (1970): $\lambda = 1 \& \alpha = 0$
 - Lasso (1996): $\lambda = 1 \& \alpha = 1$
 - Elastic Net (2005)

 $\lambda = 1 \& 0 < \alpha < 1$

- Notice When
 - $\lambda = 0 \implies \mathsf{PSSE}\mathsf{=}\mathsf{SSE}$
 - As λ Gets Bigger, the Coefficients Approach 0

Irrelevant Nonsense

Watch Me Whip Watch Me Lasso

Run Chunk 1 Ridge Penalty

>	<pre>ridge.mod=g1mnet(x=as.matrix(SIM.DATA[,-1]),</pre>
+	<pre>y=as.vector(SIM.DATA[,1]),</pre>
+	alpha=0)
>	plot(ridge.mod,xvar="lambda")

Run Chunk 2Lasso Penalty

> lasso.mod=glmnet(x=as.matrix(SIM.DATA[,-1]), + y=as.vector(SIM.DATA[,1]), + alpha=1) > plot(lasso.mod,xvar="lambda")

- Run Chunk 3Elastic Net Penalty
- > enet.mod=glmnet(x=as.matrix(SIM.DATA[,-1]), + y=as.vector(SIM.DATA[,1]), + alpha=1/2) > plot(enet.mod,xvar="lambda")

Disperse and Make Reasonable Decisions