

- Important Reading
- Ch. 15-17 in R4DS
- Ch. 10-11 in RPZP
- Ch. 2.3,2.4,9,11 in HOPR
- Programming Steps
- Understand the Problem
- Inputs and Outputs
- Create Code
- Test the Code (Simple Case)
- Generalize the Code
- Test Problematic Cases
- Edit Code to Handle Issues
- Consider Efficiency

- Packages Required:
- Tidyverse
- Ecdat
- Knit Document As You Go
- Read Introduction
- Prepare Your Minds for the Matrix

Part 1: If-Else

- "If"

if (CONDITION) \{ ACTION
 \}

- "If-Else"
- ifelse()
ifelse(CONDITION,ACTION1,ACTION2)

Part 1: If-Else

- Run Chunk 1
- Check if Larger than 0
- If True, Take Log
- Result When $x=3$?
- Result When $x=-3$?
- Run Chunk 2
- Notice the Difference
- If-Else to Handle Errors
- Run Chunk 3
- Situation Not Considered
- Replace BLANK to Lead to Potential Problem

Part 1: If-Else

- Run Chunk 4
- Replace BLANK with Different Options and Check
- How Would You Explain this Code to Your Granny?
- Run Chunk 5
- What is the Difference Between y1 and y2?
- Always Look for a Vectorized Solution for Efficiency
- Run Chunk 6
- Nested ifelse() Statements
- How Would You Explain this to your Mother?

- General Construction
- "for" Loop
for (INDEX in VECTOR) \{ ACTION FOR EACH INDEX
\}

- "while" Loop
while (CONDITION) \{
ACTION UNTIL CONDITION = FALSE
- Nested "for" Loops for (INDEX1 in VECTOR1) \{ for (INDEX2 in VECTOR2) \{ ACTION
\}
\}

Part 2: Loops

- Mental Process
- I Want to Do for Every until
- What Type of Object Do You Want Returned?
- Initiate a Starting Point Based on the Desired Output
- Try R Code on Single Instance
- Create the Loop

```
Part 2: Loops
```

- Geometric Series

$$
\sum_{k=0}^{\infty} a r^{k}=\frac{a}{1-r}, \text { for }|r|<1
$$

- Run Chunk 1
- What a did you choose?
- What r did you choose?
- What is the theoretical limit?
- What pattern exists?
- Run Chunk 2
- Choose a and r that work?
- Choose a and r that don't work?
- Modify: if(k>100) break
- Geometric Series (Cont.)

- Run Chunk 3
- Suppose We Want to Save at Every Step
- Why? Picture to Examine the Path of the Summation
- Choose Small $\mathrm{K}<15$
- Choose Large K>50
- What do You Observe?
- How Would You Explain This Code to Your Stranged Brother?

Closing

Disperse and Make Reasonable Decisions

