Programming II

Setup for Lecture

- Open Supplement
- Packages Required:
 - Tidyverse
 - Ecdat
- Knit Document As You Go
- Read Introduction

Part 2: Loops

- Correlation Matrix
 - Definition: Matrix Which Shows the Correlation Between Every Pair of Numeric Variables
 - Used to Understand Strength of Linear Relationships Between Numeric Variables
 - Helpful in Measuring Collinearity
- Run Chunk 4
 - Inspect the Variables in Cigar
 - Inspect the Correlation Matrix
 - Which Variable(s) is Inappropriate for a Correlation Analysis? Why?

Part 2: Loops

- Run Chunk 5
 - Run First Half Loops through Every Combination of Columns and Computes Correlation
 - Examine Second Half Loops Through Every Combination of Columns Excluding the First Column
 - Fill in Blanks with Appropriate Indices so Second Loop Works
 - Run Second Half
- Run Chunk 6
 - Inspect the Variables in HI
 - Uncomment to Print Correlation
 Matrix
 - What is the Problem?

Part 2: Loops

• Run Chunk 7

- Observe the Difference
 Between the Printed Tibbles
- What is the Difference?
- How Would You Explain the First Loop to a Toddler?
- What is cat() doing?
- How Would You Explain the Second Loop to an Infant?
- Remember: There Are an Infinite Number of Ways to Do the Same Thing.

Part 3: SRS

Important For Simulation Studies

Known Distributions

Distribution	Density/pmf	cdf	Quantiles	Random Numbers
Normal	dnorm()	pnorm()	qnorm()	<pre>rnorm() rchisq() rbinom()</pre>
Chi square	dchisq()	pchisq()	qchisq()	
Binomial	dbinom()	pbinom()	qbinom()	

- "d" -> Useful for Plotting Density Curve for Continuous Variables or Probability Mass Function for Discrete Variables
- "p" -> Finds the Probability Less Than Or Equal to a Given Number
- "q" -> Finds Cutoff Points
- "r" -> Generates a Random Sample from the Distribution

Part 3: SRS

- For SRS, Use "r"
- Run Chunk 1
 - Scenario for x1: You Ask BLANK Number of Students There Grades where Grades Follow a Normal Distribution with Mean=82 and SD=2
 - Scenario for x2: You Ask BLANK Number of Students to Roll a Fair Die 10 Times and Tell You the Number of 6's that Appeared.
 - Try Small and Large for BLANK

Part 3: SRS

- Sampling From Finite Set of Possible Outcomes
- Run Chunk 2
 - Scenario: Flip k Coins
 - P(Heads) = BLANK
 - P(Tails) = 1-BLANK
 - How would You Explain What the Figure is Showing to a Politician?

Disperse and Make Reasonable Decisions