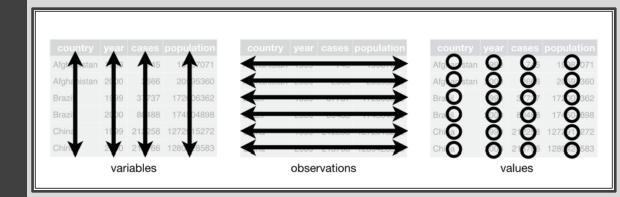


Tidy Data I

Intro to Tidy Data

- Read Chapter 9
- Functions From tidyr Package


>library(tidyr)

- gather()
- spread()
- separate()
- unite()
- complete()
- fill()

Tidy Data Defined

- For Tidy Data:
 - Each Variable Must Have Its Own Column
 - Each Observation Must Have Its Own Row
 - Each Value Must Have Its Own Cell

Problem

- Most Data is Not Tidy
- Reason: Data Collectors Often Don't Know How Data Should Be Recorded Since They Don't Analyze the Data
- Common Problems
 - A Variable Spread Across
 Multiple Columns
 - A Observation is Spread Across Multiple Rows
- *"Until we can fix people we must fix the data"*
 - Mahatma Mario


```
untidy1=tribble(
 ~subject, ~sex, ~control, ~cond1, ~cond2,
 1, "M", 7.9, 12.3, 10.7,
 2, "F", 6.3, 10.6, 11.1,
 3, "F", 9.5, 13.1, 13.8,
 4, "M", 11.5, 13.4, 12.9
)
untidy1
```

L.					-		
L.	##	#	A tibble	e: 4 x	5		
L	##		subject	sex	$\operatorname{control}$	cond1	cond2
L	##		<dbl></dbl>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
L	##	1	1	М	7.9	12.3	10.7
L	##	2	2	F	6.3	10.6	11.1
L	##	3	3	F	9.5	13.1	13.8
L	##	4	4	М	11.5	13.4	12.9

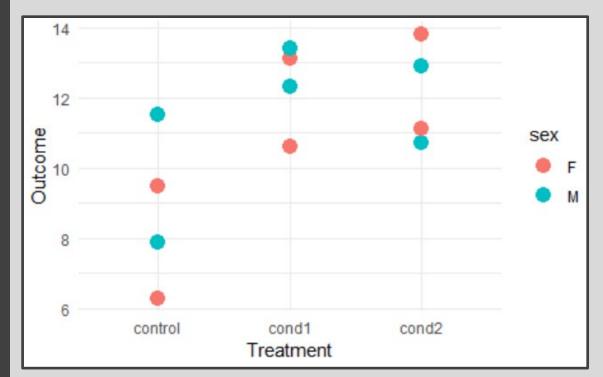
- Multiple Treatment Data
- Variables "Control", "Cond1", and "Cond2" are Measuring the Same Thing Under Different Treatments
- The Name of the Variable Whose Values Form the Column Names Can Be Called "Treatment"
- The Name of the Variable Whose Values are Spread Over the Cells Can Be Called "Outcome"


```
tidy1a=untidy1 %>%
  gather(control:cond2,key="Treatment",
value="Outcome")
tidy1a
```

##	# A	tibble	: 12 x	4	
##		subject	sex	Treatment	Outcome
##		<dbl></dbl>	<chr></chr>	<chr></chr>	<dbl></dbl>
##	1	1	М	control	7.9
##	2	2	F	control	6.3
##	3	3	F	control	9.5
##	4	4	М	control	11.5
##	5	1	М	cond1	12.3
##	6	2	F	cond1	10.6
##	7	3	F	cond1	13.1
##	8	4	М	cond1	13.4
##	9	1	М	cond2	10.7
##	10	2	F	cond2	11.1
##	11	3	F	cond2	13.8
##	12	4	Μ	cond2	12.9


```
tidy1b=untidy1 %>%
  gather(3:5, key="Treatment",value="Outcome",
factor_key=T)
glimpse(tidy1b)
```

```
## Observations: 12
## Variables: 4
## $ subject <dbl> 1, 2, 3, 4, 1, 2, 3, 4, 1
, 2, 3, 4
## $ sex <chr> "M", "F", "F", "M", "M",
"F", "F", "M", "M", "F", "F...
## $ Treatment <fct> control, control, control
, control, cond1, co...
## $ Outcome <dbl> 7.9, 6.3, 9.5, 11.5, 12.3
, 10.6, 13.1, 13.4, 10.7, 1...
```


str(tidy1b\$Treatment)

Factor w/ 3 levels "control","cond1",..: 1
1 1 1 2 2 2 2 3 3 ...

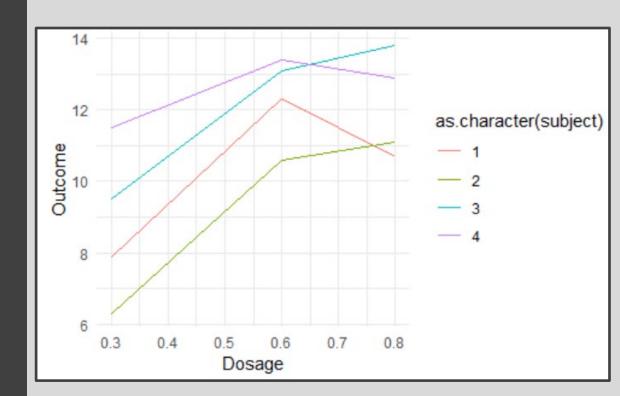
• Why Do This Nonsense?


```
untidy2=tribble(
~subject, ~sex, ~`0.3`, ~`0.6`, ~`0.8`,
1, "M", 7.9, 12.3, 10.7,
2, "F", 6.3, 10.6, 11.1,
3, "F", 9.5, 13.1, 13.8,
4, "M", 11.5, 13.4, 12.9
)
untidy2
```

##	#	A tibble	e: 4 x	5		
##		subject	sex	`0.3`	`0.6`	`0.8`
##		<dbl></dbl>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	1	М	7.9	12.3	10.7
##	2	2	F	6.3	10.6	11.1
##	3	3	F	9.5	13.1	13.8
##	4	4	М	11.5	13.4	12.9



- Repeated Measures Data
- Variables "0.3", "0.6", and "0.8" are Measuring the Same Thing Under Different Drug Strengths
- The Name of the Variable Whose Values Form the Column Names Can Be Called "Dosage"
- The Name of the Variable Whose Values are Spread Over the Cells Can Be Called "Outcome"




```
tidy2a=untidy2 %>%
gather(`0.3`:`0.8`,key="Dosage",value="Outcome")
glimpse(tidy2a)
```

tidy2b=untidy2 %>%
gather(`0.3`:`0.8`,key="Dosage",value="Outcome",convert=T)
glimpse(tidy2b)

• Why Do This Nonsense?

untidy3=tribble(

```
~Pack, ~Type, ~Measure, ~Value,
1, "Regular", "Count", 15,
1, "Regular", "Percent Blue", 0.2,
2, "Peanut", "Count", 12,
2, "Peanut", "Percent Blue", 0.3,
)
untidy3
```

1								
	##	#	A tibk	ole: 4 x	4			
	##		Pack	Туре	Measure		Value	
	##		<dbl></dbl>	<chr></chr>	<chr></chr>		<dbl></dbl>	
	##	1	1	Regular	Count		15	
	##	2	1	Regular	Percent E	Blue	0.2	
	##	3	2	Peanut	Count		12	
	##	4	2	Peanut	Percent E	Blue	0.3	

Spreading

- Less Common
- Column "Measures" Contains Variable Names
- Column "Value" Contains the Output of the Different Variables
- Notice Values are of Different Units (Count vs Percentage)
- Spreading Does the Opposite of Gathering

Spreading


```
tidy3=untidy3 %>%
  spread(key=Measure,value=Value)
tidy3
```

##	#	A tibk	ole: 2 x	4		
##		Pack	Туре	Count	`Percent Blue`	
##		<dbl></dbl>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	
##	1	1	Regular	15	0.2	
##	2	2	Peanut	12	0.3	

Spreading

• Why Do This Nonsense?

```
tidy3 %>%
  mutate(nBlue=Count*`Percent Blue`) %>%
  select(-Count,-`Percent Blue`)
```

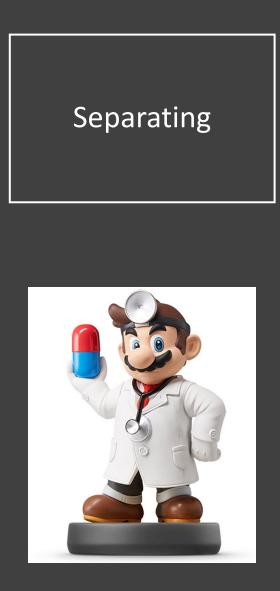
##	#	A tibble: 2 x	3
##		Pack Type	nBlue
##		<dbl> <chr></chr></dbl>	<dbl></dbl>
##	1	1 Regular	3
##	2	2 Peanut	3.6

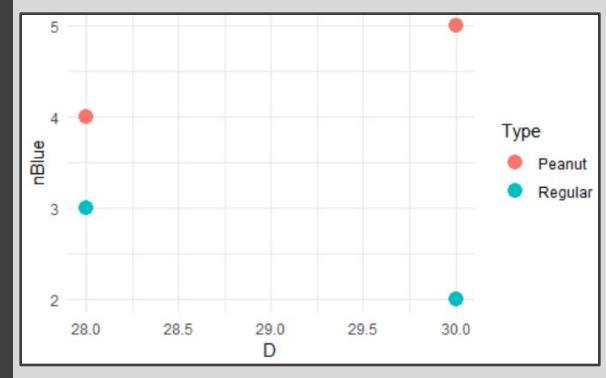

```
untidy4=tribble(
~Pack, ~Type, ~PropBlue, ~Date,
1, "Regular", "3/15", "9-28-2018",
2, "Regular", "2/15", "9-30-2018",
3, "Peanut", "4/12", "9-28-2018",
4, "Peanut", "5/13", "9-30-2018",
)
untidy4
```

##	#	A tibk	ole: 4 x	4	
##		Pack	Туре	PropBlue	Date
##		<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>
##	1	1	Regular	3/15	9-28-2018
##	2	2	Regular	2/15	9-30-2018
##	3	3	Peanut	4/12	9-28-2018
##	4	4	Peanut	5/13	9-30-2018

Separating

- Very Uncommon
- The Variable "PropBlue"
 Contains Two Numeric Variables
- The Variable "Date" Contains
 Three Numeric Variables
- We Must Separate Both of These
 Variables Into Multiple Columns


Separating


```
tidy4a=untidy4 %>%
  separate(PropBlue, into=c("nBlue", "Total"), sep="/") %>%
  separate(Date, into=c("M", "D", "Y"), sep="-")
glimpse(tidy4a)
```

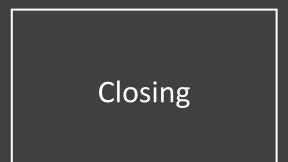
```
## Observations: 4
## Variables: 7
## $ Pack <dbl> 1, 2, 3, 4
## $ Type <chr> "Regular", "Regular", "Peanut", "Peanut"
## $ nBlue <chr> "3", "2", "4", "5"
## $ Total <chr> "15", "15", "12", "13"
## $ M <chr> "9", "9", "9", "9"
## $ D <chr> "28", "30", "28", "30"
## $ Y <chr> "2018", "2018", "2018", "2018"
```

```
## Observations: 4
## Variables: 7
## $ Pack <dbl> 1, 2, 3, 4
## $ Type <chr> "Regular", "Regular", "Peanut", "Peanut"
## $ nBlue <int> 3, 2, 4, 5
## $ Total <int> 15, 15, 12, 13
## $ M <int> 9, 9, 9, 9
## $ D <int> 28, 30, 28, 30
## $ Y <int> 2018, 2018, 2018, 2018
```


- Why Do This Nonsense? *"I have no idea"*
- Maybe...


```
untidy5=tribble(
~Type, ~`Average Count`, ~`SD Count`,
"Regular", 30, 1,
"Peanut", 22, 3,
"Peanut Butter", 24, 2,
"Almond", 18, 3,
)
untidy5
```

##	#	A tibble: 4 \times	3			
##		Туре	`Average (Count`	`SD Count`	
##		<chr></chr>		<dbl></dbl>	<dbl></dbl>	
##	1	Regular		30	1	
##	2	Peanut		22	3	
##	3	Peanut Butter		24	2	
##	4	Almond		18	3	


Uniting

- Uniting Does the Opposite of Separating
- Combine Information Prior to Presenting in Table

```
tidy5=untidy5 %>%
  unite(`Mean (SD)`,`Average Count`,`SD Count`,sep=" (")
  %>%
  mutate(`Mean (SD)`=paste(`Mean (SD)`,")",sep=""))
tidy5
```

```
## # A tibble: 4 × 2
## Type `Mean (SD)`
## <chr> <chr>
## 1 Regular 30 (1)
## 2 Peanut 22 (3)
## 3 Peanut Butter 24 (2)
## 4 Almond 18 (3)
```


Disperse and Make Reasonable Decisions