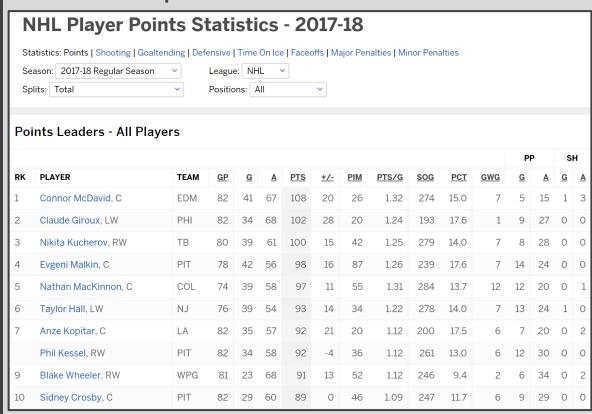


Web Scraping

Motivation for Web Scraping



- Relying on Downloadable CSV's Puts You at a Disadvantage
- Majority of Data Is Found Online
- Negative: Online Data is Unstructured in HTML Format
- Positive: Online Data is Often Updated, Relevant, & Untapped

Motivation for Web Scraping

Example 1: ESPN NHL Stats

Motivation for Web Scraping

Example 2: Blood Pressure Chart

hat Should Blood Pressure be According to Age?										
Approx. BP According to Age Chart										
Age	Low		Normal		Elevated		Stage 1 Hypertension		Stage 2 Hypertension	
	S	D	S	D	S	D	S	D	S	D
17-19	< 90	< 60	< 120	< 80	120-129	< 80	130-139	80-89	140+	90+
20-24	< 90	< 60	< 120	< 80	120-129	< 80	130-139	80-89	140+	90+
25-29	< 90	< 60	< 120	< 80	120-129	< 80	130-139	80-89	140+	90+
30-34	< 90	< 60	< 120	< 80	120-129	< 80	130-139	80-89	140+	90+
35-39	< 90	< 60	< 120	< 80	120-129	< 80	130-139	80-89	140+	90+
40-44	< 90	< 60	< 120	< 80	120-129	< 80	130-139	80-89	140+	90+
45-49	< 90	< 60	< 120	< 80	120-129	< 80	130-139	80-89	140+	90+
50-54	< 90	< 60	< 120	< 80	120-129	< 80	130-139	80-89	140+	90+
55-59	< 90	< 60	< 120	< 80	120-129	< 80	130-139	80-89	140+	90+
60+	< 90	< 60	120	< 80	120-129	< 80	130-139	80-89	140+	90+

Motivation for Web Scraping

Example 3: AP Top 50 Stories

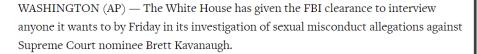
AP Top News

50 stories

20 mins ago

'Deliberate act of compassion' a reaction to Vegas shooting

LAS VEGAS (AP) — As a cloud-streaked orange sunset glowed over Las Vegas, officials, victims' families and survivors of year's mass shooting at a country music festival marked the first anniversary of the tragedy by placing roses on a tribute wall and dedicating a memorial garden Wednesday...


Shootings Las Vegas mass shooting North America Las Vegas Brian Sandoval U.S. News

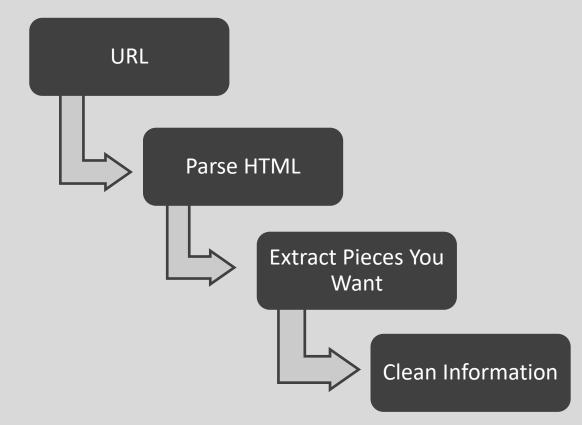
2 hours ago

White House gives FBI freer rein in Kavanaugh investigation

The new guidance, described to The Associated Press by a person familiar with it, was...

Sexual misconduct Supreme courts Kavanaugh nomination Politics North America U.S. Supreme Court Courts Christine Blasey Ford

Web Scraping Defined



- Process of Converting Currently Unstructured Data on Web to Structured Data in R
- Ideas:
 - ESPN Table to CSV
 - Blood Pressure Chart to Tibble
 - Top News Stories to List in R
- Absolutely Crucial Skill for Modern Data Scientists

Web Scraping in R

- The rvest package
 - > library(rvest)
 - Written by Hadley Wickham
 - General Process:

Supplement Introduction

- Step 1: Open Supplement
- Step 2: Ensure You Have the Following R Packages Installed
 - tidyverse
 - rvest (Requires Internet)
 - devtools
 - noncensus (Install from Github)
- Step 3: Knit and Run
- Step 4: Read the Introduction

- Step 1: Wikipedia Violent Crimes
- Step 2: Locate the Table

				VICIOII OI IIIIO			
♦ State	c ity	Population	† Total	Murder and Nonnegligent ♦ manslaughter	♦ Rape ¹	¢ Robbery	
X Alabama	Mobile ³	248,431	6217.02	20.13	58.16	177.11	
Alaska	Anchorage	296,188	6640.04	9.12	132.01	262.67	
Arizona	Chandler	249,355	2589.08	2.01	52.13	56.95	
Arizona	Gilbert	242,090	1483.75	2.07	16.11	21.07	
Arizona	Glendale	249,273	5037.85	4.81	38.91	192.96	
Arizona	Mesa	492,268	2592.49	4.67	51.19	92.23	
Arizona	Phoenix	1,608,139	4443.2	9.55	69.46	200.28	
*** Arizona	Scottsdale	251,840	2338.38	1.99	40.90	39.71	
Arizona	Tucson	1,532,323	6082.78	8.64	93.55	268.82	
: California	Anaheim	353 400	2997 74	2 83	32 54	135 82	

Goal: Read Table Into R

- Step 3: What Do You Expect to Be a Problem in the Data?
- Step 4: Run Chunk 1
 - Is This What You Expected?
 - What New Problems Arise?
- Step 5: Run Chunk 2
 - Select Wanted Information
 - Remove 1st and 2nd Rows
 - Rename Variables

- Step 6: Run Chunk 3
 - Converting Variable Types
 - as.numeric()
 - as.character()
 - as.date()
 - as.integer()
 - All Numeric Variables are Character Because of First Row
- Step 7: Run Chunk 4
 - City Variable Has Problems
 - State Variable Has Problems
 - Why Do We Care?

- Step 8: Run Chunk 5
 - String Functions Used
 - str_replace_all()
 - str_replace()
 - Conditional Mutation
 - ifelse()
- Step 9: Base Knit

Part 2: Geographical Locations of US Cities

- Step 1: What Additional Information Would We Need to Plot Crime Information on a Map?
- Step 2: Run Chunk 1
 - What Info is Important?
 - What Do You Notice About the City Variable?
- Step 3: Run Chunk 2
 - Goal: Find the Average Latitude and Longitude for Each City and State

Part 2: Geographical Locations of US Cities

- Step 4: Run Chunk 3
 - Examine the Output
 - Notice Aaronsburg, PA

Aaronsburg / Coordinates

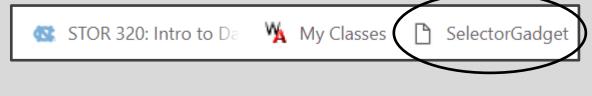
40.8998° N, 77.4533° W

- Are We Ready to Merge?
 - #No
 - #WhyNot
- Step 5: Pinch Knit

Part 3: Linking State Names to State Abbreviations

- Step 1: Select Website Link
- Step 2: Examine the Table

Name	Abbreviation	Name	Abbreviation
Alabama	AL	Montana	MT
Alaska	AK	Nebraska	NE
Arizona	AZ	Nevada	NV
Arkansas	AR	New Hampshire	NH
California	CA	<u>New Jersey</u>	NJ
Colorado	СО	New Mexico	NM
Connecticut	СТ	New York	NY


 Step 3: What is the Issue with the Way this Information is Presented and How Does this Pose a Threat to Our Existence? Part 3:
Linking State
Names to State
Abbreviations

- Step 4: Run Chunk 1
 - Did You Get What You Expected?
 - How Should We Fix This Data?
- Step 5: Run Chunk 2
 - Stacking Datasets
 - Horizontally
 - $> \overline{\text{cbind}(x,y)}$
 - Vertically
 - > rbind(x,y)
- Step 6: Knitting Streak

- Step 1: Selector Gadget Website
 - Open Source
 - Chrome Extension Exists
 - Easy: Drag Link to Bookmark
 Bar as Webpage Explains

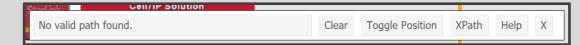
- Step 2: Observe the Article on 2018's Safest and Most Dangerous States
 - What info could be of use?
 - Do you agree identification?

Step 3: Information of Interest

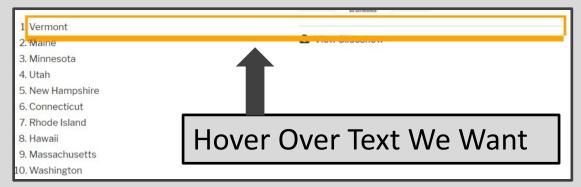
Safe vs Dangerous

- 1. Vermont
- 2. Maine
- 3. Minnesota
- 4. Utah
- 5. New Hampshire
- 6. Connecticut
- 7. Rhode Island
- 8. Hawaii
- 9. Massachusetts
- 10. Washington

- 1. Mississippi
- 2. Louisiana
- 3. Oklahoma
- 4. Texas
- 5. Florida
- 6. Arkansas
- 7. Alabama
- 8. Missouri
- 9. Alaska
- 10. South Carolina


 Goal: Scrape this Information into Vectors in R to Create a Table

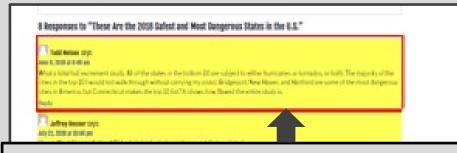
- Step 4: Identifying CSS Selector
 - Go to Web Page
- ① https://www.securitysales.com/fire-intrusion/2018-safest-most-dangerous-states-us/
 - Choose SelectorGadget in Bookmark Tab



Locate This Box

- Step 4: Continued
 - Find Content You Want

 Point and Click to Select Info


 Info We Want is Highlighted

 Info We Don't Want, As Well

- Step 4: Continued
 - Find Content You Don't Want

Hover Over Text We Don't Want

- Point and Clicks to Deselect
- Locate This Box

- Step 4: Continued
 - Locate This Box

```
#articleContentWrapper li Clear (20) Toggle Position XPath Help X
```

- Copy CSS Selector "#articleContentWrapper li"
- Step 5: Run Chunk 1

```
SAFE_VS_DANGEROUS = URL.SAFE_VS_DANGEROUS %>%

read_html() %>%

html_nodes(css="#articleContentWrapper li") %>%

html_text()
```

- Step 6: Run Chunk 2
 - What About the Other States?
- Step 7: Walk-off Knit

Closing

Disperse and Make Reasonable Decisions