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Abstract: Within sports analytics, there is substantial 
interest in comprehensive statistics intended to capture 
overall player performance. In baseball, one such meas-
ure is wins above replacement (WAR), which aggregates 
the contributions of a player in each facet of the game: hit-
ting, pitching, baserunning, and fielding. However, cur-
rent versions of WAR depend upon proprietary data, ad 
hoc methodology, and opaque calculations. We propose 
a competitive aggregate measure, openWAR, that is based 
on public data, a methodology with greater rigor and 
transparency, and a principled standard for the nebulous 
concept of a “replacement” player. Finally, we use simu-
lation-based techniques to provide interval estimates for 
our openWAR measure that are easily portable to other 
domains.
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1  Introduction
In sports analytics, researchers apply statistical methods 
to game data in order to estimate key quantities of inter-
est. In team sports, arguably the most fundamental chal-
lenge is to quantify the contributions of individual players 
towards the collective performance of their team. In all 
sports the ultimate goal is winning and so the ultimate 
measure of player performance is that player’s overall 
contribution to the number of games that his team wins. 
Although we focus on a particular measure of player con-
tribution, wins above replacement (WAR) in major league 

baseball, the issues and approaches examined in this 
paper apply more generally to any endeavor to provide a 
comprehensive measure of individual player performance 
in sports.

A common comprehensive strategy used in sports 
such as basketball, hockey, and soccer is the plus/minus 
measure (Kubatko et al. 2007; Macdonald 2011). Although 
many variations of plus/minus exist, the basic idea is 
to tabulate changes in team score during each player’s 
appearance on the court, ice, or pitch. If a player’s team 
scores more often than their opponents while he is 
playing, then that player is considered to have a positive 
contribution. Whether those contributions are primarily 
offensive or defensive is not delineated, since the fluid 
nature of these sports make it extremely difficult to sepa-
rate player performance into specific aspects of gameplay.

In contrast, baseball is a sport where the majority 
of the action is discrete and player roles are more clearly 
defined. This has led to a historical focus on separate 
measures for each aspect of the game: hitting, baserun-
ning, pitching and fielding. For measuring hitting, the 
three most-often cited measures are batting average (BA), 
on-base percentage (OBP) and slugging percentage (SLG) 
which comprise the conventional “triple-slash line”  
(BA/OBP/SLG). More advanced measures of hitting include 
runs created (James 1986), and linear weights-based metrics 
like weighted on-base average (wOBA) (Tango, Lichtman, 
and Dolphin 2007) and extrapolated runs (Furtado 1999). 
Similar linear weights-based metrics are employed in the 
evaluation of baserunning (Lichtman 2011).

Classical measures of pitching include walks and hits 
per innings pitched (WHIP) and earned run average (ERA). 
McCracken (2001) introduced defense independent pitch-
ing measures (DIPS) under the theory that pitchers do not 
exert control over the rate of hits on balls put into play. 
Additional advancements for evaluating pitching include 
fielding independent pitching (FIP) (Tango 2003) and xFIP 
(Studeman 2005). Measures for fielding include ultimate 
zone rating (UZR) (Lichtman 2010), defensive runs saved 
(DRS) (Fangraphs Staff 2013), and spatial aggregate field-
ing evaluation (SAFE) (Jensen, Shirley, and Wyner 2009). 
For a more thorough review of the measures for different 
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aspects of player performance in baseball, we refer to the 
reader to Thorn and Palmer (1984), Lewis (2003), Albert 
and Bennett (2003), Schwarz (2005), Tango et al. (2007), 
Baumer and Zimbalist (2014).

Having separate measures for the different aspects 
of baseball has the benefit of isolating different aspects 
of player ability. However, there is also a strong desire 
for a comprehensive measure of overall player perfor-
mance, especially if that measure is closely connected to 
the success of the team. The ideal measure of player per-
formance is each player’s contribution to the number of 
games that his team wins. The fundamental question is 
how to apportion this total number of wins to each player, 
given the wide variation in the performance and roles 
among players.

Win shares (James and Henzler 2002) was an early 
attempt to measure player contributions on the scale 
of wins. Value over Replacement player (Jacques 2007) 
measures player contribution on the scale of runs relative 
to a baseline player. An intuitive choice of this baseline 
comparison is a “league average” player but since average 
players themselves are quite valuable, it is not reasonable 
to assume that a team would have the ability to replace 
the player being evaluated with another player of league 
average quality. Rather, the team will likely be forced to 
replace him with a minor league player who is consider-
ably less productive than the average major league player. 
Thus, a more reasonable choice for this baseline com-
parison is to define a “replacement” level player as the 
typical player that is readily accessible in the absence of 
the player being evaluated.

The desire for a comprehensive summary of an indi-
vidual baseball player’s contribution on the scale of team 
wins, relative to a replacement level player, has culmi-
nated in the popular measure of WAR. The three most 
popular existing implementations of WAR are: fWAR 
(Slowinski 2010), rWAR (sometimes called bWAR) (Forman 
2010, 2013), and WARP (Baseball Prospectus Staff 2013). A 
thorough comparison of the differences in their method-
ologies is presented in our supplementary materials.

WAR has two virtues that have fueled its recent 
popularity. First, having an accurate assessment of each 
player’s contribution allows team management to value 
each player appropriately, both for the purposes of salary 
and as a trading chip. Second, the units and scale are 
easy to understand. To say that Miguel Cabrera is worth 
about seven wins above replacement means that losing 
Cabrera to injury should cause his team to drop about 
seven games in the standings over the course of a full 
season. Unlike many baseball measures, no advanced 
statistical knowledge is required to understand this 

statement about Miguel Cabrera’s performance. Accord-
ingly, WAR is now cited in mainstream media outlets like 
ESPN, Sports Illustrated, The New York Times, and the 
Wall Street Journal.

In recent years, this concept has generated significant 
interest among baseball statisticians, writers, and fans 
(Schoenfield 2012). WAR values have been used as quan-
titative evidence to buttress arguments for decisions upon 
which millions of dollars will change hands (Rosenberg 
2012). Recently, WAR has achieved two additional hall-
marks of mainstream acceptance: 1) the 2012 American 
League MVP debate seemed to hinge upon a disagree-
ment about the value of WAR (Rosenberg 2012); and 2) 
it was announced that the Topps baseball card company 
will include WAR on the back of their next card set (Axisa 
(2013). Testifying to the static nature of baseball card sta-
tistics, WAR is only the second statistic (after OPS) to be 
added by Topps since 1981.

1.1  Problems with WAR

While WAR is comprehensive and easily-interpretable as 
described above, the use of WAR as a statistical measure 
of player performance has two fundamental problems: 
a lack of uncertainty estimation and a lack of reproduc-
ibility. Although we focus on WAR in particular, these two 
problems are prevalent for many measures for player per-
formance in sports as well as statistical estimators in other 
fields of interest.

WAR is usually misrepresented in the media as a 
known quantity without any evaluation of the uncertainty 
in its value. While it was reported in the media that Miguel 
Cabrera’s WAR was 6.9 in 2012, it would be more accurate 
to say that his WAR was estimated to be 6.9 in 2012, since 
WAR has no single definition. The existing WAR imple-
mentations mentioned above (fWAR, rWAR and WARP) do 
not publish uncertainty estimates for their WAR values. 
As Nate Silver articulated in this 2013 ASA presidential 
address, journalists struggle to correctly interpret prob-
ability, but it is the duty of statisticians to communciate 
uncertainty (Rickert 2013).

Even more important than the lack of uncertainty 
estimates is the lack of reproducibility in current WAR 
implementations (fWAR, rWAR and WARP). The notion of 
reproducible research began with Knuth’s introduction 
of literate programming (Knuth 1984). The term reproduc-
ible research first appeared about a decade later (Claer-
bout 1994), but quickly attracted attention. Buckheit 
and Donoho (1995) asserted that a scientific publication 
in a computing field represented only an advertisement 
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of baseball must be allocated across four types of baseball 
performance: 1) batting; 2) baserunning; 3) fielding; and 
4) pitching. While there are four components of openWAR, 
each is viewed as a component of our unified conserva-
tion of runs model.

In contrast, the four components of WAR are esti-
mated separately in each previous WAR implementation 
(rWAR, fWAR, or WARP) and these implementations only 
provide point estimates of WAR. We employ resampling 
techniques to derive uncertainty estimates for openWAR, 
and report those alongside our point estimates. While the 
apportionment scheme that we outline here is specific to 
baseball, the resampling-based uncertainty measures pre-
sented in Section 4 are generalizable to any sport.

Our goal in this effort is to provide a coherent and prin-
cipled fully open-source estimate of player performance in 
baseball that may serve as a reference implementation for 
the statistical community and the media. Our hope is that 
in time, we can solidify WAR’s important role in baseball 
by rallying the community around an open implementa-
tion. In addition to the full model specification provided 
in this paper, our claim of reproducibility is supported by 
the simultaneous release of a software package for the 
open-source statistical computing environment R, which 
contains all of the code necessary to download the data 
and compute openWAR.

1.3   OpenWAR vs. previous WAR 
implementations

In our approach, WAR for a player is defined as the sum 
of all of their marginal contributions in each of the four 
aspects of the game, relative to a hypothetical replace-
ment level player after controlling for potential confound-
ers (e.g., ballpark, handedness, position, etc.). Previous 
WAR estimates, such as rWAR, fWAR, and WARP, serve as 
an inspiration for our approach but we make several key 
assumptions that differentiate our WAR philosophy from 
these previous efforts. In addition to using higher reso-
lution ball-in-play data than previous methods, we also 
have several differences in perspective.

First, openWAR is a retrospective measure of player 
performance – it is not a measure of player ability to 
be used for forecasting. It is not context-independent, 
because we feel that context is important for accurate 
accounting of what actually happened. Second, we control 
for defensive position in both our batting and fielding 
estimates. We do this at the plate appearance level, which 
allows for more refined comparisons of players to their 
appropriate peer group. Third, we believe that credit or 

for the scholarly work – not the work itself. Rather, “the 
actual scholarship is the complete software development 
environment and complete set of instructions which gen-
erated the figures” (Buckheit and Donoho (1995). Thus, 
the burden of proof for reproducibility is on the scholar, 
and the publication of computer code is a necessary, but 
not sufficient condition. Advancements in computing 
like the knitr package for R (Xie 2014) made reproduc-
ible research relatively painless. It is in this spirit that we 
understand “reproducibility.”

Interest in reproducible research has exploded in 
recent years, amid an increasing realization that many sci-
entific findings are not reproducible (Naik 2011; Zimmer 
2012; Ioannidis 2013; Nature Editorial 2013; The Econo-
mist Editorial 2013; Johnson 2014). Transparency in sports 
analytics is more tenuous than other scientific fields since 
much of the cutting edge research is being conducted by 
proprietary businesses or organizations that are not inter-
ested in sharing their results with the public.

To the best of our knowledge, no open-source imple-
mentations of rWAR, fWAR, or WARP exist in the public 
domain and the existing implementations do not meet 
the standard for reproducibility outlined above. Two of 
the three methods use proprietary data sources, and the 
third implementation, despite making overtures toward 
openness, is still not reproducible without needing extra 
proprietary details about their methods. This is frustrating 
since these WAR implementations are essentially “black 
boxes” containing ad hoc adjustments and lacking in a 
unified methodology.1

1.2  Contributions of openWAR

We address both the lack of uncertainty estimates and 
the lack of reproducibility in WAR by presenting a fully 
transparent statistical model based on our conservation of 
runs framework with uncertainty in our model-based WAR 
values estimated by resampling methods. In this paper we 
present openWAR, a reproducible and fully open-source 
reference implementation for estimating the WAR for each 
player in major league baseball.

In Section 3, we introduce the notion of conservation 
of runs, which forms the backbone of our WAR calcula-
tions. The central concept of our model is that the positive 
and negative consequences of all runs scored in the game 

1 For example, rWAR and fWAR are constrained to sum to 1000 in 
a season for no apparent substantive reason. See Section 3.8 for a 
fuller discussion.
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blame for hits on balls in play should be shared between 
the pitcher and fielders. We use the location of the batted 
ball to inform the extent to which they should be shared. 
Fourth, we propose a new definition of replacement level 
based on distribution of performance beyond the 750 
active major league players that play each day, which is 
different from existing implementations. Thus, openWAR 
is not an attempt to reverse-engineer any of the existing 
implementations of WAR. Rather, it is a new, fully open-
source attempt to estimate player performance on the 
scale of wins above replacement.

2  Preliminaries: Expected runs
A major hurdle in producing a reproducible version of WAR 
is the data source. openWAR uses data published by Major 
League Baseball Advanced Media for use in their GameDay 
web application (Bowman 2013). A thorough description 
of the MLBAM data set obtainable using the openWAR 
package is presented in our supplementary materials.

Our openWAR implementation is based upon a conser-
vation of runs framework, which tracks the changes in the 
number of expected runs scored and actual runs scored 
resulting from each in-game hitting event. The starting 
point for these calculations is establishing the number 
of runs that would be expected to score as a function of 
the current state of the game. Here, we illustrate that the 
expected run matrix – a common sabermetric construction 
dating back to the work of Lindsey (1959, 1961) – can be 
used to model these quantities.2

There are 24 different states in which a baseball game 
can be at the beginning of a plate appearance: three states 
corresponding to the number of outs (0, 1, or 2) and eight 
states corresponding to the base configuration (bases 
empty, man on first, man on second, man on third, man on 
first and second, man on first and third, man on second and 
third, bases loaded). A 25th state occurs when three outs are 
achieved by the defensive team and the half-inning ends.

We define expected runs at the start of a plate appear-
ance given the current state of an inning,

( , ) [ | , ],o b R startOuts o startBases bρ = = =E

where R is a random variable counting the number of runs 
that will be scored from the current plate appearance to 
the end of the half-inning when three outs are achieved. 

2 The expected run matrix is also the basis for Markov Chain models, 
which have been used to, among other things, optimize batting order 
(Freeze 1974; Pankin 1978; Bukiet, Harold, and Palacios 1997; Sokol 
2003).

startOuts is the number of outs at the beginning of the 
plate appearance, and startBases is the base configura-
tion at the beginning of the plate appearance. The value of 
ρ(o, b) is estimated as the empirical average of the number 
of runs scored (until the end of the half-inning) whenever 
a game was in state (o, b). Note that the value of the three 
out state is defined to be zero [i.e., ρ(3, 0)≡0].

We can then define the change in expected runs due to 
a particular plate appearance as

,endState startState∆ρ ρ ρ= −

where ρstartState and ρendState are the values of the expected runs 
in the state at the beginning of the plate appearance and 
the state at the end of the plate appearance, respectively. 
However, we must also account for the actual number of 
runs scored r in that plate appearance, which gives us

.rδ ∆ρ= +

For each plate appearance i, we can calculate δi from 
the observed start and end states for that plate appearance 
as well as the observed number of runs scored. This quan-
tity δi can be interpreted as the total run value that the par-
ticular plate appearance i is worth. Sabermetricians often 
refer to this quantity as RE24 (Appelman 2008).3

3  openWAR model
The central idea of our approach to valuing individual 
player contributions is the assumption that every run 
value δi gained by the offense as a result of a plate appear-
ance i is accompanied by a corresponding –δi gained by 
the defense. We call this principle our conservation of runs 
framework. The remainder of this section will outline a 
principled methodology for apportioning δi among the 
offensive players and apportioning –δi among the defen-
sive players involved in plate appearance i.

3.1  Adjusting offensive run values

As outlined above, δi is the run value for the offensive team 
as a result of plate appearance i. We begin our modeling 
of offensive run value by adjusting δi for several factors 
beyond the control of the hitter or baserunners that make 
it difficult to compare run values across contexts. Specifi-
cally, we want to first adjust for the ballpark of the event 
and any platoon advantage the batter may have over the 
pitcher (i.e., a left-handed batter against a right-handed 

3 RE for “run expectancy” and 24 for the 24 distinct states.
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thrown out then ˆ iη  will be negative. Note that ˆ iη  also 
contains the baserunning contribution of the hitter for 
plate appearance i.

We apportion baserunner run value, ˆ iη  amongst the 
individual baserunners involved in plate appearance i 
based upon their expected base advancement compared 
to their actual base advancement. If we denote kij as the 
number of bases advanced by the jth baserunner after 
hitting event mi, then we can use all plate appearances in 
our dataset to calculate the empirical probability

ˆ Pr( | )ij ij iK k mκ = ≤

that a typical baserunner would have advanced at least the 
kij bases that baserunner j did advance in plate appearance 
i. If baserunner j does worse than expected (e.g., not advanc-
ing from second on a single) then ˆ ijκ  will be small whereas if 
baserunner j takes an extra base (e.g., scoring from second 
on a single), then ˆ ijκ  will be large. These advancement prob-
abilities ˆ ijκ  are used as weights for apportioning the base-
runner run value, ˆ ,iη  to each individual baserunner,

 

ˆ
ˆRAA

ˆ
ijbr

ij i
j ij

κ
η

Σ κ
= ⋅

 
(5)

The value RAAbr
ij  is the runs above average attribut-

able to the jth baserunner on the ith plate appearance.

3.3  Hitter run values

As calculated in (4) above, ˆ iη  represents the portion of 
the adjusted offensive run value ˆ,iε  that is attributable to 
the baserunners during plate appearance i. The remaining 
portion of the adjusted offensive run value,

 
ˆ ˆˆi i iµ η= −ε

 (6)

is the adjusted offensive run value attributable to the 
hitter during plate appearance i. Our remaining task for 
hitters is to calibrate their hitting performance relative to 
the expected hitting performance based on all players at 
the same fielding position.4 We fit another linear regres-
sion model to adjust the hitter run value by the hitter’s 
fielding position,

pitcher). We control for these factors by fitting a linear 
regression model to the offensive run values,

 
,i i iδ = ⋅ +B εα
 (1)

where the covariate vector Bi contains a set of indicator 
variables for the specific ballpark for plate appearance 
i and an indicator variable for whether or not the batter 
has a platoon advantage over the pitcher. The coefficient 
vector α contains the effects of each ballpark and the 
effect of a platoon advantage on the offensive run values. 
Regression-based ballpark factors have been previously 
estimated by Acharya et al. (2008). Estimated coefficients 
α̂ are calculated by ordinary least squares using every 
plate appearance in our dataset.

The estimated residuals from the regression model (1),

 
ˆî i iδ= − ⋅Bε α

 (2)

represent the portion of the offensive run value δi that is 
not attributable to the ballpark or platoon advantage, and 
so we refer to them as adjusted offensive run values.

3.2  Baserunner run values

The next task is determining the portion of îε  that is attrib-
utable to the baserunners for each plate appearance i 
based on the following principle: baserunners should only 
get credit for advancement beyond what would be expected 
given their starting locations, the number of outs, and the 
hitting event that occurred. We can estimate this expected 
baserunner advancement by fitting a second regression 
model to our adjusted offensive run values,

 
ˆ ,i i iη= ⋅ +Sε β

 (3)

where the covariate vector Si consists of: 1) a set of indi-
cator variables that indicate the specific game state 
(number of outs, locations of baserunners) at the start of 
plate appearance i and; 2) the hitting event (e.g., single, 
double, etc.) that occurred during plate appearance i. 
The 31 event types in the MLBAM data set that describe 
the outcome of a plate appearance are listed in our sup-
plementary materials. Estimated coefficients β̂  are 
calculated by ordinary least squares using every plate 
appearance in our dataset. The estimated residuals from 
the regression model (3),

 
ˆˆ ˆ ,i i iη = − ⋅Sε β  (4)

represent the portion of the adjusted offensive run value 
that is attributable to the baserunners. If the baserun-
ners take extra bases beyond what is expected, then ˆ iη  
will be positive, whereas if they take fewer bases or get 

4 This is necessary because players who play more difficult fielding 
positions tend to be weaker hitters. In the extreme case, pitchers as 
a group are far worse hitters than those who play any other posi-
tion. Thus, to evaluate the batting performance of pitchers without 
correcting for their defensive position would result in almost every 
pitcher being assigned a huge negative value for their batting perfor-
mance. This would result in a dramatic undervaluation of pitchers 
(in the National League, at least) since they are obligated to hit while 
they are pitching.
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ˆ i i iµ ν= ⋅ +H γ

 (7)

where the covariate vector Hi consists of a set of indica-
tor variables for the fielding position of the hitter in plate 
appearance i. Note that pinch-hitter (PH) and designated 
hitter (DH) are also valid values for hitter position. Esti-
mated coefficients γ̂ are calculated by ordinary least 
squares using every plate appearance in our dataset. The 
estimated residuals from this regression model,

 
ˆ ˆˆRAAhit

i i i iν µ γ= = − ⋅H
 (8)

represent the run values (above the average for the hitter’s 
position) for the hitter in each plate appearance i.

3.4  Apportioning defensive run values

As we discussed in Section 2, each plate appearance i is 
associated with a particular run value δi, and we appor-
tioned the offensive run value δi between the hitters and 
various baserunners in Sections 3.1–3.3. Now, we must 
apportion the defensive run value –δi between the pitcher 
and various fielders involved in plate appearance i.

The degree to which the pitcher (versus the fielders) 
is responsible for the run value of a ball in play depends 
on how difficult that batted ball was to field. Surely, if 

the pitcher allows a batter to hit a home run, the fielders 
share no responsibility for that run value. Conversely, if 
a routine groundball is muffed by the fielder, the pitcher 
should bear very little responsibility.

We assign the entire defensive run value –δi to the 
pitcher for any plate appearance that does not result in a 
ball in play (e.g., strikeout, home run, hit by pitch, etc.). 
For balls hit into play, we must estimate the probability 
p that each ball-in-play would result in an out given the 
location that ball in play was hit.

The MLBAM data set contains (x, y)-coordinates that 
give the location of each batted ball, and we use a two-
dimensional kernel density smoother (Wand 1994) to esti-
mate the probability of an out at each coordinate in the 
field,

ˆ ( , )i i ip f x y=

Figure 1 gives the contour plot of our estimated prob-
ability of an out, ˆ ,ip  for a ball in play i hit to coordinate 
(xi, yi) in the field. For that ball in play i, we use ˆ

ip  to divide 
the responsibility between the pitcher and the fielders. 
Specifically, we apportion

δδ

δ δ

= ⋅
= ⋅

– 1– to the pitcher
–

    ( )     
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Figure 1: Contour plot of our estimated probability of an out ˆip  for a ball in play i as a function of the coordinates (xi, yi) for that ball in play. 
Numerical labels give the estimated probability of an out at that contour line.
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left since they are moving towards first base). Estimates of 
the coefficients ˆ

�θ  are calculated from all balls in play. As 
an example, the surface of our fielding model for center-
fielders is illustrated in Figure 2.

For ball in play i, we use the coordinates (xi, yi) and 
the estimated coefficients �θ̂  for each fielding position ℓ 
to estimate the probability �

ˆ
ip  that fielder ℓ makes an out 

on ball in play i. We normalize these probabilities across 
positions to estimate the responsibility siℓ

Σ
= �
�

� �

ˆ
ˆ ,

ˆ
i

i
i

p
s

p

of the ℓth fielder on the ith play, which gives us the run 
value ˆf

i isδ ⋅ �  for each fielder ℓ. Finally, we fit a regression 
model to adjust the fielding run values for the ballpark in 
which ball in play i occurred,

 ˆf
i i i isδ τ⋅ = ⋅ +D� �φ  (9)

where the covariate vector Di contains a set of indicator 
variables for the specific ballpark for plate appearance i. 
The coefficient vector φ contains the effects of each ball-
park which is estimated across all balls in play. The esti-
mated residuals of this model,

 ˆˆ ˆRAA field f
i i i i isτ δ= = ⋅ − ⋅D� � � φ  (10)

represent the run value above average for fielder ℓ on ball 
in play i.

The fielders bear more responsibility for a ball in play 
that is relatively easy to field (ˆ

ip  near 1) whereas a pitcher 
bears more responsibility for a ball in play that is rela-
tively hard to field (ˆ

ip  near 0).

3.5  Fielding run values

In Section 3.4 above, we allocated the run value δf
i  to the 

fielders. We must now divide that run value amongst the 
nine fielders who are potentially responsible for ball in 
play i. For each fielding position ℓ, we use all balls in play 
to fit a logistic regression model,

( )i ilogit p = ⋅X� �θ

where piℓ is the probability that fielder ℓ makes an out5 
on ball in play i hit to coordinate (xi, yi) in the field. The 
covariate vector Xi consists of linear, quadratic and inter-
action terms of xi and yi. The quadratic terms are necessary 
to incorporate the idea that a player is most likely to field a 
ball hit directly at him, and the interaction term captures 
the notion that it may be easier to make plays moving to 
one side (e.g., shortstops have better range moving to their 
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Figure 2: Contour plot of fielding model for centerfielders. The contours indicate the expected probability that any given centerfielder will 
catch a fly ball hit to the corresponding location on the field.

5 Here we interpret “making an out” as successfully converting a ball 
in play into at least one out.
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3.6  Pitching run values

In Section 3.4 above, we allocated run value p
iδ  to the 

pitcher for plate appearance i. We need to adjust these 
run values to account for ballpark and platoon advantage, 
since both factors affect our expectation of pitching per-
formance. We fit the following regression model,

 ,p
i i iδ ψ ξ= ⋅ +B  (11)

where the covariate vector Bi contains a set of indicator 
variables for the specific ballpark for plate appearance 
i and an indicator variable for whether or not the batter 
has a platoon advantage over the pitcher (same as in 
equation 1). The coefficient vector ψ contains the effects 
of each ballpark and the effect of a platoon advantage on 
the pitching run values. We estimate the coefficients ψ̂  
using the pitching run values for all plate appearances i. 
The estimated residuals of this model,

 ˆ ˆRAApitch p
i i i iξ δ ψ= = − ⋅B  (12)

represent the run value above average for the pitcher on 
plate appearance i.

3.7  Tabulating runs above average

As outlined in Sections 2–3.6, we can calculate the run 
value for the hitter (RAA ),hit

i  the run values for each base-
runner (RAA ),br

ij  the run values for each fielder �(RAA )field
i  

and the run value for the pitcher (RAA )pitch
i  in each plate 

appearance i.
The overall run value for a particular player q is cal-

culated by tabulating these run values across all plate 
appearances involving that player as a hitter, pitcher, 
baserunner or fielder,

RAA I ( hitter )

RAA I ( runner )

RAA I ( fielder )

RAA I ( pitcher )

hit
q i

i
br
ij

j i
field

i
i

pitch
i

i

RAA q

j q

q

q

= ⋅ = +

⋅ = +

⋅ = +

⋅ =

∑
∑∑
∑∑
∑

�
�

�

We present a logical summary of our WAR calculation in 
Figure 3.

3.8  Replacement level

As noted in our introduction, it is desirable to calibrate 
our comprehensive measure of player performance rela-
tive to a baseline “replacement level” player. However, 
the definition of a replacement level player remains 
controversial. The procedure used by both the fWAR 
and rWAR implementations is to set replacement level 
“at 1000 WAR per 2430 Major League games, which 
is the number of wins available in a 162 game season 
played by 30 teams. Or, an easier way to put it is that our 
new replacement level is now equal to a 0.294 winning 
percentage, which works out to 47.7 wins over a full 
season” (MacAree 2013). This definition is ad hoc, with 
the primary motivation for the definition seems to be 
the use of a convenient round number. In contrast, we 
derive a natural definition for replacement level from 
first principles.

The purpose of the replacement-level player is the 
need to replace a full-time major league player. There are 
only so many major league players, and all other players 
who participate in major league baseball are necessar-
ily replacement players. Since there are 30 major league 
teams, each of which carries 25 players on its active roster 

...

... ...
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− δi

δi
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δi
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 park
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Figure 3: Schematic diagram of openWAR: The red ellipse labeled RE24 represents the estimated change in run value of a plate appear-
ance. This value is then split into many parts and atrributed to the appropriate source. The diamonds represent fractions of RE24 that are 
not attributable to the player, whereas the ellipses on the outside correspond the four components of openWAR (hitting, baserunning, 
pitching, and fielding) that are attributable to a player.
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different run consequences despite the fact that they are 
driven by the same batting event (a home run). In tradi-
tional WAR calculations, a linear weights estimator is 
used for the batting component that assigns a run value 
to players based on aggregate batting statistics (such as 
wOBA) regardless of the game state. In other words, all 
home runs are given the same value in traditional WAR 
implementations, which introduces error into a player’s 
WAR value in the sense that an equal weighting of all 
home runs is a less accurate description of what actually 
happened. [See Wyers (2013) for a discussion of quantify-
ing situational error associated with WARP.] In contrast, 
our openWAR system is not subject to this type of error as 
we compute WAR based on each plate appearance rather 
than using aggregate statistics, which is a key distinction 
from the three previous implementations of WAR (fWAR, 
rWAR and WARP).

Player outcome variability is the uncertainty inherent 
in the outcomes of all events involving a particular player 
for a particular season. Imagine a particular player with 
a fixed ability, but repeat the same season for that player 
many times. In each of these seasons, the events involv-
ing that player would have variation in their outcomes, 
which would aggregate to a different WAR value for that 
particular player. The random variation in individual 
events dominates the variability in a player’s WAR value, 
which is why our variance estimation targets this source 
of uncertainty.

Specifically, we estimate player outcome variability 
using a resampling strategy. In a particular season, we 
resample (with replacement) the RAA values for individual 
plate appearances, and re-aggregate them into a new WAR 
value for each player. A single resampling (a theoretical 
simulated season) will result in a second set of point esti-
mates for the WAR of each player for which the models 
have not changed but the number of different individual 
events (e.g., the number of home runs hit by a player) 
could have changed. By performing this resampling pro-
cedure many times, we quantify the outcome variability 
for each player while preserving any inherent correlation 
within the individual events.8 Although we have discussed 
uncertainty specifically for WAR, we believe that the above 
delineation of variability sources is generalizable to most 
aggregate measures of player performance across sports.

during the season,6 there are exactly 750 active major 
league players on any given day. We use this natural limi-
tation to demarcate the set of major league players, and 
deem all others to be replacement-level players. Since 
most teams carry 13 position players and 12 pitchers, we 
designate the 30·13–390 position players with the most 
plate appearances and the 30·12 = 360 pitchers with the 
most batters faced as major league players. We submit that 
this naturally-motivated definition of replacement level is 
preferable to the ad hoc definition currently in use.

We can associate a replacement-level shadow with 
an actual player by multiplying the average performance 
across all replacement-level players by the number of 
events for that actual player. The WAR accumulated by 
each player’s replacement-level shadow provides a mean-
ingful baseline for comparison that is specific to that 
player. Using the convention that approximately 10 wins 
are equivalent to one win,7 our openWAR value is com-
puted as

,
10

repl
q q

q

RAA RAA
WAR

−
=

where repl
qRAA  is the runs above average figure for player 

q’s replacement-level shadow.

4  Sources of variability
Existing implementations of WAR discuss uncertainty 
vaguely or not at all. We can delineate three sources of 
variability in the WAR values for each player in a given 
season: model estimation variability, situational variabil-
ity, and player outcome variability. Model estimation vari-
ability comes from the errors that are made in estimating 
the parameters of our models for batting, pitching, field-
ing and baserunning in Section 3 as well as the expected 
runs model in Section 2. These models are trained on up to 
hundreds of thousands of observations and so this source 
of variability is small relative to the player outcome vari-
ability described below.

Situational variability comes from the differences in 
game situations across occurrences of the same batting 
event. For example, some home runs are hit when the 
bases are loaded whereas other home runs are hit when 
the bases are empty. These two situations have very 

6 In September, active rosters may expand to as many as 40 players, 
although in practice, few teams carry more than 35.
7 Justification for this convention is provided in our supplementary 
materials.

8 We could use a similar resampling strategy to evaluate the model 
estimation variability as well, by re-fitting all of our openWAR models 
on each resampled season. However, the computational burden for 
re-fitting each model on each resampled season is very high and hard 
to justify given the relatively small size of the model estimation vari-
ability compared to the player outcome variability.
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5  Results
In the 2012 MLB season, 534 of the N = 1284 players were 
designated as replacement-level. openWAR was distrib-
uted approximately normally among these replacement-
level players, with a mean of 0.01 and a standard deviation 
of 0.41. Conversely, the distribution of openWAR across all 
players was skewed heavily to the right, reflecting the dis-
proportionate amount of openWAR accumulated by rela-
tively few players. While the median openWAR was close 
to zero (0.36), the mean was a bit larger (0.91). openWAR 
values for all players fell between –2.6 and 8.6 wins above 
replacement, giving a range of 10 wins between the best 
player (Mike Trout) and the worst (Nick Blackburn). In 
Figure 4, we depict openWAR values for 2012, illustrating 
each player’s replacement-level shadow and differentiat-
ing the major league players from the replacement-level 
players. There are 2N dots in Figure 4: N non-gray dots 
representing the RAA values for actual players and N gray 
dots representing the RAA values for the replacement-
level shadows of those players.

We note that the variability associated with player per-
formance is not constant. Figure 5 shows density estimates 
for the distribution of openWAR values under the resam-
pling scheme described in Section 4 for three prominent 

players: Miguel Cabrera, Robinson Cano, and Mike Trout. 
Trout’s point estimate for WAR is higher than that of 
Cabrera or Cano, but the 95% confidence interval for his 
true openWAR is narrower, which suggests that Trout’s per-
formance is more consistent on a play-by-play basis than 
the others. Table 1 shows various quantiles of the distribu-
tion of openWAR for the top 20 performers in 2012.

Figure 6 depicts the width of 95% confidence inter-
vals for openWAR based on resampling all plays that 
occurred in the 2012 season. As expected, the width of the 
confidence interval for a particular player widens as that 
player is exposed to more playing time. In general, the 
confidence intervals for pitchers tend to be smaller than 
those for position players with comparable playing time. 
This may suggest that pitchers perform more consistently 
across plate appearances, or merely reflect the fact that 
the replacement level for pitchers is higher (closer to 0) 
than it is for position players.

As noted in the introduction, WAR was at the core of 
the debate about the 2012 American League MVP Award. 
Miguel Cabrera of the Detroit Tigers had become the 
first player since 1967 to win the Triple Crown, leading 
the AL in the conventional statistics of batting average, 
home runs, and runs batted in. However, sabermetricians 
advocated strongly for Mike Trout, a rookie centerfielder 
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Figure 4: openWAR RAA values for the 2012 MLB season. Each blue dot is a major league player, while each pink dot is a replacement-level 
player. For each player, we also plot a gray dot that represents their replacement-level shadow with the same amount of playing time. For 
three specific players, we show the vertical distance between their RAA and the RAA for their replacement-level shadow. Playing time is 
calculated as “plate appearances + batters faced” to provide an equivalent scale for both pitchers and batters: playing time for pitchers 
is the number of batters faced, whereas playing time for batters is the number of plate appearances. For pitchers, we also add any plate 
appearances they had as a batter.
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who excelled in all aspects of the game. While it was 
acknowledged on both sides that Cabrera was likely the 
better hitter, sabermetricians argued that Trout’s supe-
rior skill at baserunning and fielding more than made up 
for Cabrera’s relatively small edge in batting. In fact, for 
adherents of sabermetrics, the decision was clear – point 
estimates showed Trout leading Cabrera by 3.2 fWAR and 
3.6 rWAR.

Our openWAR values provide a more sophisticated 
perspective on this debate. Trout’s point estimate for 
openWAR in 2012 is 1.05 wins larger than Cabrera’s, 
but it is important to note that their interval estimates 
overlap considerably. In Figure 7, the joint distribution 
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Figure 5: openWAR density estimates for Miguel Cabrera (blue), Robinson Cano (pink), and Mike Trout (green). Note that while Trout’s 
density curve is further to the right, it is narrower than the others.

Table 1: Distribution of openWAR for 2012. Quantiles reported are 
based on 3500 simulated seasons.

Name   q0  q2.5  q25  q50  q75  q97.5  q100

Mike Trout   3.52  5.81  7.58  8.53  9.48  11.27  13.91
Robinson Cano   2.56  4.88  6.85  7.92  8.96  11.11  13.74
Chase Headley   1.97  4.47  6.42  7.47  8.50  10.53  13.12
Miguel Cabrera   1.99  4.31  6.43  7.46  8.49  10.49  12.84
Edwin Encarnacion   2.67  4.54  6.36  7.32  8.29  10.29  13.17
Andrew McCutchen  2.02  4.29  6.18  7.19  8.17  10.17  12.07
Joey Votto   2.82  4.76  6.21  7.00  7.77  9.34  10.80
Prince Fielder   2.57  4.16  5.98  6.96  7.90  9.89  12.18
Joe Mauer   2.51  4.32  5.89  6.78  7.64  9.27  11.01
Buster Posey   2.49  4.08  5.79  6.73  7.62  9.46  11.98
Aaron Hill   1.29  3.72  5.64  6.62  7.59  9.52  12.67
Ryan Braun   1.97  3.68  5.55  6.60  7.62  9.56  11.44
Ben Zobrist   1.67  3.94  5.52  6.44  7.33  9.06  11.65
Josh Willingham   0.83  3.33  5.25  6.29  7.27  9.44  11.75
Martin Prado   1.59  3.69  5.27  6.16  7.05  8.65  10.97
Aramis Ramirez   0.52  3.19  5.18  6.15  7.09  9.05  11.73
Elvis Andrus   0.83  3.52  5.25  6.14  7.03  8.89  11.10
Matt Holliday   0.54  3.22  5.07  6.09  7.09  9.02  11.20
Adrian Gonzalez   1.40  3.04  4.91  5.93  6.96  8.84  10.89
David Wright   1.20  3.22  4.95  5.88  6.81  8.64  10.63

of openWAR values for Cabrera and Trout’s 2012 seasons 
are plotted. In nearly 32% of those simulated seasons, 
Cabrera’s openWAR was higher than Trout’s. Thus, our 
results suggest that there is a high probability that Trout 
had a better season than Cabrera, but there is substantial 
uncertainty in their comparison. This exercise illustrates 
two strengths of openWAR: 1) distinctions made through 
point estimates tend to accord with those made via the 
existing implementations (note that Cabrera was not even 
the second-best player in any implementation); and 2) the 
interval estimates provided by openWAR allow for more 
nuanced conclusions to be drawn.

Table 2 shows the top ten best and worst baserunners, 
according to openWAR in 2012. We note many true posi-
tives (Mike Trout and Desmond Jennings are considered 
to be excellent baserunners, while Paul Konerko, David 
Ortiz and Adrian Gonzalez are plodding) with no eyebrow-
raising surprises.

Similarly, Table 3 shows the top ten best and worst 
fielders according to openWAR in 2012. Here again we see 
some true positives (Brandon Crawford, Darwin Barney, 
and Adam Jones are reputedly excellent fielders) but also 
some head-scratchers (Prince Fielder is anecdotally con-
sidered a poor fielder). We also note that the magnitudes 
of the fielding numbers reported by openWAR are smaller 
than those reported by UZR. This may be a result of the 
fact that openWAR currently only measures some defen-
sive skills, or it could reflect weaknesses in the unknown 
models underlying UZR, which merits further study.

Results for openWAR in the 2013 seasons were 
similar to those of 2012, with an observed range of –2.0 
to 10.7. Mike Trout was again the best player, and Clayton 
Kershaw was again the best pitcher (6.5 openWAR). 
Figure 8 shows the full openWAR results for all players in 
2013, and quantiles for simulated openWAR for 2013 are 
presented in Table 4.
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Table 2: 2012 baserunning RAA leaders.

Best   RAA  Worst   RAA

Mike Trout   14.79  Paul Konerko   –9.28
Martin Prado   9.03  David Ortiz   –8.43
Desmond Jennings  8.84  Jamey Carroll   –8.27
Jarrod Dyson   8.62  Michael Young   –8.07
Evereth Cabrera   8.62  Todd Helton   –7.08
Drew Stubbs   7.86  Prince Fielder   –6.82
Jason Heyward   7.75  Adrian Beltre   –6.34
Darwin Barney   7.67  Justin Morneau   –6.29
Torii Hunter   7.64  Adrian Gonzalez  –6.26
Dustin Ackley   7.51  Howie Kendrick   –5.90

Table 3: 2012 fielding RAA leaders.

Best   RAA  Worst   RAA

Jason Heyward   10.17  Colby Rasmus   –10.44
Brandon Crawford   9.91  Jose Altuve   –9.03
Yunel Escober   9.19  Tyler Greene   –8.30
Ben Zobrist   8.23  Brian Dozier   –7.82
Darwin Barney   8.05  Lucas Duda   –7.82
Prince Fielder   7.66  Shin-Soo Choo   –7.77
Adrian Gonzalez   7.43  Orlando Cespedes  –7.49
Alejandro De Aza   7.13  Justin Smoak   –7.34
Adam Jones   7.05  Garrett Jones   –6.83
Craig Gentry   6.72  Rickie Weeks   –6.64
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uncertainty estimates. In Table 5, we list the top 10 perfor-
mance in openWAR alongside those of fWAR. There is con-
siderable (though not universal) agreement with respect to 
these players and the magnitudes of the WAR values are 
similar. Comparison to rWAR yields similar results.

We can examine the overall correlation between pre-
vious WAR implementations and our openWAR point esti-
mates in Table 6. openWAR correlates highly with both 
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Figure 8: openWAR RAA values for the 2013 MLB season. Each blue dot is a major league player, while each pink dot is a replacement-
level player. For each player, we also plot a gray dot that represents their replacement-level shadow with the same amount of playing time. 
Playing time is calculated just as in Figure 4. Mike Trout and Clayton Kershaw were the best position player and pitcher, respectively, while 
Joe Blanton was the worst player.

Table 4: Distribution of openWAR for 2013. Quantiles reported are 
based on 3500 simulated seasons.

Name   q0  q2.5  q25  q50  q75  q97.5  q100

Mike Trout   5.48  7.60  9.58  10.60  11.60  13.58  15.39
Miguel Cabrera   2.74  5.70  7.62  8.71  9.79  11.83  14.74
Chris Davis   3.14  5.39  7.41  8.53  9.64  11.82  13.87
Matt Carpenter   2.99  5.00  6.77  7.67  8.56  10.34  12.52
Paul Goldschmidt   1.47  4.39  6.46  7.64  8.78  10.93  13.81
Josh Donaldson   1.76  4.35  6.22  7.21  8.17  10.15  12.73
Matt Holliday   2.07  4.34  6.16  7.07  7.97  9.89  12.58
Shin-Soo Choo   2.63  4.33  6.14  7.06  7.98  9.89  12.02
Freddie Freeman   1.13  4.28  6.03  7.05  8.04  9.93  11.59
Robinson Cano   1.23  4.07  5.94  6.98  8.01  10.03  12.10
Andrew McCutchen  1.75  4.00  5.74  6.71  7.70  9.53  11.80
David Ortiz   1.61  3.87  5.60  6.63  7.63  9.59  12.08
Clayton Kershaw   2.12  4.31  5.77  6.54  7.31  8.79  10.60
Carlos Santana   2.35  3.89  5.54  6.42  7.30  8.89  11.04
Jason Kipnis   1.68  3.62  5.35  6.29  7.23  9.04  11.23
Ian Kinsler   1.17  3.33  5.06  5.92  6.79  8.47  10.76
Edwin Encarnacion  1.03  3.12  4.94  5.91  6.84  8.90  11.71
Joey Votto   1.43  3.31  4.96  5.91  6.82  8.63  10.44
Troy Tulowitzki   1.15  3.33  5.02  5.88  6.75  8.47  10.04
Cliff Lee   1.41  3.15  4.60  5.39  6.18  7.70  9.48

Table 5: 2012 WAR Leaders, fWAR (left) and openWAR (right).

Name   fWAR  Name   openWAR

Mike Trout   10.0  Mike Trout   8.57
Robinson Cano   7.7  Robinson Cano   7.91
Buster Posey   7.7  Miguel Cabrera   7.52
Ryan Braun   7.6  Chase Headley   7.50
David Wright   7.4  Edwin Encarnacion   7.28
Chase Headley   7.2  Andrew McCutchen  7.24
Miguel Cabrera   6.8  Joey Votto   6.96
Andrew McCutchen  6.8  Prince Fielder   6.92
Jason Heyward   6.4  Joe Mauer   6.73
Adrian Beltre   6.3  Buster Posey   6.71

5.1   Comparison to previous WAR 
implementations

Our openWAR point estimates are similar to existing imple-
mentations of WAR, though as noted above, we also provide 

Table 6: Correlation matrix between openWAR, fWAR, and rWAR.

  rWAR  fWAR  openWAR

rWAR   1  0.918  0.881
fWAR   0.918  1  0.875
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fWAR and rWAR, although not as highly as they correlate 
with each other.

We also examined the consistency of openWAR from 
season-to-season by calculating the autocorrelation 
within players between their 2012 and 2013 seasons. As 
seen in Table 7, the within-player autocorrelation of our 
openWAR values are similar to those of fWAR and rWAR.

As illustrated in Figure 4, the sum of all RAA values 
in 2012 is exactly 0, and the sum of all openWAR values 
is 1166. Whereas the former figure is guaranteed based on 
the way we have defined runs above average, the latter 
is sensitive to changes in the definition of replacement-
level. However, as noted in Section 3.8, replacement-
level is defined in both fWAR and rWAR so that the sum 
of all WARs is 1000. In order to compare the magnitudes 
of openWAR to fWAR and rWAR directly, we can gener-
ate more comparable values by increasing the number of 
replacement-level players. This in turn raises the perfor-
mance of the replacement-level shadows, and lowers the 
amount of WAR in the system (see Figure 9). Given the ad 
hoc nature of the previous definition of replacement-level, 

Table 7: Autocorrelation of WAR implementations. Each player’s 
WAR in 2012 and 2013 was calculated, and the correlation between 
the matched pairs is shown.

  rWAR   fWAR   openWAR

Autocorrelation   0.522   0.596   0.571

Playing time (plate appearances plus batters faced)
Number of players = 1284 , Number of replacement level players = 603
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Figure 9: openWAR RAA values for 2012, normalized so that the total WAR is about 1000. Compared to Figure 4, here the definition of 
replacement-level is more inclusive. Playing time is calculated just as in Figure 4.

we prefer our definition. Moreover, the fact that the total 
unnormalized openWAR was nearly identical in 2012 and 
2013 (1166 and 1173), suggest that there may be some 
intrinsic meaning to this number. Additionally, the total 
RAA values for rWAR did not add up to 0 in either 2012 or 
2013 – a logical weakness in that system.

6  Summary and further discussion
The concept of WAR has been one of the great success 
stories in the long history of sabermetrics, and sports ana-
lytics in general. However, there are major limitations in 
previous methodology both in terms of calculating WAR, 
and in the public’s understanding of what WAR values 
mean. Chiefly, the previous implementations of WAR are 
not reproducible and do not contain uncertainty esti-
mates. This leads to the unpleasant situation where jour-
nalists are forced to take WAR estimates on faith, with no 
understanding of the accuracy (or construction) of those 
estimates. In this paper, we have addressed the issues 
of reproducibility and uncertainty estimation by provid-
ing a fully open source, statistical model for Wins Above 
Replacement based on our conservation of runs frame-
work with uncertainty in our model-based WAR values 
estimated by resampling methods.

There remain several limitations of openWAR that offer 
the opportunity for further research. The first limitation 
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is data quality. Although the fidelity of the MLBAM data 
is very high, it is not perfect. There were instances in the 
data where players were listed with the wrong ID and for 
most balls in play, there was not a description of whether 
that ball was hit on the ground or in the air. Furthermore, 
there is no indication of how long each batted ball took to 
get to the specified location, making both the trajectory 
and speed of each batted ball unknown.

The accounting of baserunner movement for non-
batting events like stolen bases, caught stealings, wild 
pitches, and errors merits further work. All baserunner 
movement is captured, but it is modeled implicitly. Our 
approach only takes into account the actual baserunner 
movement but is indifferent to the various mechanisms by 
which a baserunner advanced. For example, a runner on 
first who steals second base and advances to third on a 
single is rewarded the same amount as a baserunner who 
advances to second on a wild pitch and then advances to 
third on a single. The same holds for a runner who simply 
advances directly from first to third on a single.

The defensive models used in openWAR are some-
what rudimentary and could certainly be improved with 
more resolute data. Since there is no record in the data of 
where each fielder was standing at the beginning of the 
play, there is no way to distinguish between fielder range 
versus fielder positioning. This drawback is also true in 
most current fielding measures, such as UZR and SAFE. 
Some fielding measures such as UZR add additional com-
ponents for throwing and the ability to turn a double play, 
which we hope to add to openWAR in future work.

Another interesting idea would be a conservation of 
wins framework for openWAR rather than the conserva-
tion of runs. Rather than assigning the value of each plate 
appearance based on the change in expected runs, the 
value of a plate appearance could alternatively be based 
on the change in win probability from the beginning to 
the end of a plate appearance. The openWAR framework 
could then be altered to take changes in win probability as 
inputs rather than the change in the expected run matrix. 
One rationale for using win probability is that we may not 
wish to treat each run scored as contributing equally to a 
win. For example, extra runs when a team is winning by a 
large margin are not as valuable as an extra run when the 
teams are tied.

We suspect that using a framework based on the 
change in win probability will give similar results in terms 
of magnitude and ranking of players, since every day 
hitters will get plate appearances in many different game 
situations. However, certain types of players (closers, 
relief specialists, pinch hitters, defensive replacements, 
pinch runners) may only make appearances in games 

in specific situations such that the runs that they create 
or prevent may be systematically more (or less) valuable 
than the approximately 10% of a win that is assigned to 
each run now. It would be particularly interesting to look 
at relief pitchers as they are often only in a game because 
of the specific game situation (the game is close and near 
the end of the game), which would make the runs they 
prevent more valuable than most runs created over the 
course of the season.
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