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Abstract
A team is backed into a 4th-and-26 from their own 25, down 3 points. What are the odds that

drive ends in a field goal? In the 2003 playoffs, Donovan McNabb and the Eagles scoffed at such a
probability as they converted and ultimately kicked a field goal to send the game into overtime. This
study creates a mathematical model of a football drive that can calculate such probabilities, labeling
down, distance, and yard line into states in an absorbing Markov chain. The Markov model provides
a basic framework for evaluating play in football. With all the details of the model—absorption
probabilities, expected time until absorption, expected points—we gain a much greater situational
understanding for in-game analysis.
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Introduction 
 
After an 11-yard sack, Donovan McNabb and the Philadelphia Eagles were 
backed up to their own 25-yard line.  Down 17-14 to the Green Bay Packers with 
1:12 remaining in the game, the top-seeded Eagles were on the verge of being 
eliminated from their first game in the 2003 playoffs.  On 4th-and-26, the Eagles 
call for a 25-yard slant.  McNabb drops back and throws a bullet to Freddie 
Mitchell in stride, converting and laughing in the face of probability1.  The Eagles 
then drove down the field and kicked a field goal, sending the game into overtime 
where they would eventually win.  What are the odds that a drive containing a 4th-
and-26 from the 25 would end with a successful field goal? According to our 
model, a whopping 1 out of 175. 
  A football team’s ultimate goal is to win.  Each season is divided into 
games, each game is divided into drives, and each drive is divided into plays.  The 
goal of this study is to use a mathematical model known as a stochastic process—
more specifically, a Markov chain—to model a football drive.   

Each drive has a finite number of states.  A state is defined by down (1-4), 
distance to a first down (1-100), and yard line (1-99).  Each drive can only end in 
a finite number of ways as well: scoring play, giving the ball back to the other 
team, the end of the half or game.  Through this study, we will determine the 
probability of a drive ending in any number of ways based on the team being in 
any situation on the field.  For example, we can estimate a team’s chances of 
scoring a touchdown given that they have a 2nd down-and-4 to go on their own 
40-yard line. 

From these probabilities, we will also be able to determine the expected 
number of plays a team will run before the drive ends.  In addition, we can create 
a model of expected points for every state.  That is, we can assign a value to every 
down, distance, and yard line that represents the expected number of points a 
team will score.  Expected points are extremely beneficial in measuring the 
efficiency of plays, players, and teams. 

The mathematical model can be used to give a greater understanding of a 
team’s position in a drive since it encompasses every possible situation.  From 
there, it can be used to optimize strategic decisions like play calling based on the 
probabilities and expected points.  With proper data, our model can be fit to 
measure specific play calling, players or teams. 
 
 
 
 

                                                 
1 4th-and-26 video can be found here: http://www.youtube.com/watch?v=QOEq7p4r00U 
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Markov Models Across Sports 
 
Markov models are commonly used to model sports, as there is typically a state-
dependent nature to games.  Whether it is modeling the score or in-game 
situation, estimating future outcomes enables higher quality decision-making.  
Paul Newton and Kamran Aslam developed a Markov model of tennis to predict 
game, set, and match winners based on four inputs—probability of winning a 
serve, winning a return, consistency on serve and return (Newton 2009).  
Similarly, Mark Pankin, among others, created a Markov model of baseball 
(Pankin 1985).  Baseball is inherently state-based and thus, lends itself to 
stochastic modeling.  States are determined by outs and base runners.  In more 
complex models, inning, score, and even pitch count are taken into account.  The 
primary goal of baseball modeling is to calculate the expected number of runs to 
be scored given any situation.  From this data, analysts can determine a player’s 
contribution above or below league average by comparing actual runs contributed 
versus expectation.  We will develop a parallel to expected runs from our football 
model, called expected points. 
 
Stochastic Processes & Markov Chains 
 
A stochastic process is “any process in nature whose evolution we can analyze 
successfully in terms of probability” (Doob 1996).  That is, a process for which 
we do not know the outcome but can make estimates based on the probability of 
different events occurring over time.  A primary example of a stochastic process 
is the Markov chain.  The essence of a Markov chain is that the next state depends 
only on the current state (the Markov property, seen in equation (1)); all previous 
events have no effect on the future of the chain.   

 
(1)  P(Xn+1 = x | X1 = x1, … , Xn = xn) = P(Xn+1 = x | Xn = xn) 
 
This equation simply means that the probability of event n + 1 (the next event) 
being x given that we know all previous events 1, 2, 3, … n, is the same as just 
knowing event n (the most recent event).  A good example of this is flipping a 
coin repeatedly, where the state is the number of heads observed.  If the number 
of heads is 60 after 100 flips, we do not know what this total will be after the 101st 
flip, but we can estimate based on probability—making this a stochastic process.  
Further, it does not matter what the total was after the 1st flip, the 20th flip, or the 
99th flip; all we need to know is the total after the 100th flip in order to estimate 
the 101st flip—making this a Markov chain.   

We are specifically dealing with a discrete-time Markov chain with a 
finite number of states.  Discrete-time means that the process can be divided into 
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specific steps—in our case, plays, in the previous example, flips of a coin.  In 
football, if a team is in a certain situation, what happened previously has no effect 
on what will happen next.  For example, if we have a 1st-and-10 from our own 20, 
it does not matter if the previous play was a kickoff for a touchback or a 10-yard 
gain for a first down after a 3rd-and-10 from the 10-yardline.  Either way, we now 
have a new situation that will only directly affect the next play.  To qualify this, 
previous play-calls may affect future decision-making beyond the most recent 
play.  For example, if a team runs the ball several times to set up a play-action 
pass, that affects the probability of success on the play.  This, however, is 
determined almost entirely by game theory.  If we disregard specific play 
calling—as run and pass are not variables in the model—only a team’s current 
down, distance, and yard line determine the probability of future events in a drive.  
That is, the probability of going to any other state (which is only defined by 
down, distance, and yard line) is dependent only on the current, or most recent 
state. 

A football drive can be seen as an absorbing Markov chain.  In an 
absorbing Markov chain, there is a set of special states known as absorbing states.  
The main distinction of an absorbing chain is that as time goes to infinity—in our 
case, as the number of plays in a drive gets higher—the probability of ending up 
in one of the absorbing states goes to 1.  Since a drive can only end in a specific 
number of ways, and a drive must end, these drive-endings are the absorbing 
states.  Specifically, it is impossible to leave an absorbing state.  Once a team 
scores a touchdown, they cannot leave that state, the drive ends and the Markov 
chain is absorbed. 

In order to define a Markov chain, we must know the transition 
probabilities.  A transition probability is the probability of going from one state to 
another in one step (seen in (2)): 
 
(2) Px,y = Probability of going from state ‘x’ to state ‘y’ in one step  
 
In a Markov chain with a finite number of states, like ours, these probabilities can 
be written in the form of a transition matrix, seen below in (3). 
 
(3) Transition matrix for Markov chain with ‘n’ states: 
           [ P1,1 P1,2 … P1,n 
 
   P2,1 P2,2 … P2,n 
 P =   
   … … … … 
    
   Pn,1 Pn,2 … Pn,n  ] 
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From these transition probabilities we can determine the probability of being 
absorbed into any of the absorbing states.  In addition, we can estimate the 
expected number of plays before being absorbed. 
 
Data 
 
For this study, we used play-by-play data from the last 5 seasons (2005-2009).  
This includes about 200,000 plays, 30,000 drives, and 1,280 games2.  Play-by-
play data was checked for accuracy against Pro-Football-Reference.com to ensure 
proper totals for categories like touchdowns, field goals, safeties, etc… 
 
A Mathematical Model of Football 
 
The first step was to divide a drive into all possible situations and label them as 
distinct states.  The non-absorbing—non-drive-ending states, also known as 
transient states—were determined by down, distance-to-go, and yard line.  The 
field was divided into 20 zones, one for every 5 yards.  Similarly, the distance-to-
go was split into 5-yard increments3 .  This was done to ensure high enough 
frequencies for every state; if there were any states that never occurred in a game 
in the past 5 years, it would detract from the accuracy of the model.  The range of 
frequencies was 6 to 6624, with an average of about 550 visits to each state. There 
were a total of 340 transient states. 

There are 9 possible drive-ending scenarios fitting into the three categories 
listed above: scoring, giving the ball back, end of half or game.  The absorbing 
states are as follows: touchdown, field goal, safety, missed field goal, fumble, 
interception, turnover on downs, punt, end of half or game. 

With this list of 349 states, we parsed the play-by-play to determine the 
start state and end state of every single play.  From here, we can calculate the 
transition probabilities for all states and create our transition matrix.  We looked 
at all the actual transitions of a specific start state—which end states the start state 
led to directly.  In other words, if we were in state x 100 times, 40 times we went 
to state y, 60 times we went to state z then the transition probabilities are Px,y = 
0.4, Px,z = 0.6. 

These transition probabilities were then placed into a matrix with 349 
rows and 349 columns, with the first 340 entries as the transient states and the last 
9 as the absorbing states.  Thus, we have a transition matrix with entry (i,j) as the 
probability of going from state i to state j in one step.  Since a team cannot start in 
one of the absorbing states, the first 340 columns of the last 9 rows will all be 0.  
Similarly, since a team cannot leave an absorbing state, the last 9 columns of the 
                                                 
2 Data was generously provided by Albert Lyu and AdvancedNFLStats.com 
3 All distance-to-go greater than 20 yards was lumped into one increment 
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last 9 rows will be all 0s except for a diagonal of 1s representing the probability of 
1 going from an absorbing state to itself.  The general form of a transition matrix 
for an absorbing Markov chain with n transient states and r absorbing states can 
be seen in Table 1 by partitioning the aforementioned matrix P into four parts 
(Grinstead 1997): 
 

Table 1: Absorbing Transition Matrix 
Partition of n x n transition matrix P by absorbing and transient states 

 

Transient Absorbing 

Transient Q 
(n x n) 

R 
(n x r) 

Absorbing 0 
(r x n) 

I 
(r x r) 

 
The whole transition matrix has n + r rows and columns, but can be divided into 
these four sub-matrices: Q, R, 0, I (the dimensions of which are labeled in Table 
1). 
 
Absorption Probabilities 
 
In order to calculate absorption probabilities, we must perform some matrix 
manipulation.  As seen above, the transition matrix can be divided into 4 distinct 
segments—sub-matrices.  We attain a 340-row, 9-column matrix, B, with 
absorption probabilities from each state from equation (5). 
 
(5) B = [(I – Q)-1]*R 
 
Here, I is a 340x340 identity matrix.  That is, entry (i,j) = 0 for all i,j unless i = j; 
if i = j, (i,j) = 1.  An example of the absorption probabilities can be found at the 
end in Table 3.  The absorption probabilities for 1st-and-10 or 1st-and-Goal can be 
seen in Figure 1. 
Notice the three primary states that are affected: touchdown, field goal, and punt. 
As we approach the opponent’s goal line, touchdown and field goal probabilities 
increase dramatically, while punt probability decreases. Once a team reaches first 
down inside about the 10-yard line, field goal probability drops due to a 
precipitous increase in touchdowns. Similarly, we can look at the absorption 
probabilities on 4th down in Figure 2. 
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Figure 1 shows the estimated transition probabilities from the Markov model including all nine 
absorbing states on 1st-and-10 or 1st-and-Goal based on the yards from the opponent's goal line. 
 

On 4th down, both missed field goal and turnover-on-downs probabilities 
change significantly. We see an increase around the 30-yard line, as expected, 
when coaches have to make the tough decision whether to punt, kick a long field 
goal, or go for it. At this same spot on the field there is a steep, inverse change 
between punt probability and field goal probability. 

 
What do absorption probabilities tell us?  
 
In other words, how can a team benefit from this?  Most great football minds have 
a general idea of how a drive will end up; coaches and strategists have an innate 
understanding of these probabilities.  But by assigning values to every single 
situation, we provide a framework for much greater detailed analysis of in-game 
play.  We know a good portion of 1st-and-10 situations from our own 20 will end 
in a punt, but now we know the exact probability around the league—49.8%.  A 
coach can then look at every time his team was in this situation versus how many 
times the team punted, to evaluate the efficiency of his team in that specific game 
situation.  Additionally, we can determine how many points a team is expected to 
score, which we will discuss in greater detail later.  Comparing a team’s past  
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Figure 2 displays the average absorption probabilities on 4th-down based on yards from 
opponent’s goal line for all nine absorbing states. Distances-to-go are grouped together due to the 
low frequency of 4th downs.  
 
performance—whether one’s own team or the opponent—in certain situations 
versus the league expectation (those values from our model) creates a greater 
understanding for where that team is successful and unsuccessful.  The model, 
with additional data, can be tailored to a specific team, offense/defense, and in-
game strategy like run versus pass or individual play calling.  For example, if we 
add in play-call as an additional indicator variable for run and pass, we could 
determine how efficient it is to run or pass based on the down, distance, and yard 
line.       
 
Accuracy of Absorption Probabilities 
 
Since our transition probabilities were determined by actual data, the absorption 
probabilities will reflect actual team performance over the last 5 years.  Figure 1 
behaves exactly as we would expect it to: punt probability decreases as we 
approach the opponent’s end zone while field goal and touchdown probabilities 
increase.  Once we reach the 10-yard line, field goal probability decreases due to a 
precipitous increase in touchdown probability—teams begin to go for it more 
often at this point. 

We can, however, assess the validity of our absorption probabilities.  Let’s 
take three random scenarios over the 2005-2009 time period: (1) 1st-and-10, 80 
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yards from the opponent’s end zone, (2) 2nd-and-5, 40 yards from the opponent’s 
end zone, (3) 3rd-and-1, 15 yards from the opponent’s end zone.   

In situation (1), the greatest difference in any of the 9 absorption 
probabilities is for Field Goals.  The Markov Model predicts that 9.3% of drives 
containing a 1st-and-10 from a team’s own 20 will end in a field goal; in reality, 
10.3% of these drives ended in field goals, a difference of 1.0%.  The average 
deviation between actual results and the Markov probabilities is 0.45%. 

For situation (2), the largest deviation from reality comes from drives 
ending in touchdowns.  Here, the sample size is a little smaller—a frequency of 
69—so we will include 2nd-and-5 from the opponent’s 43 through 37, which gives 
us a higher frequency of 345. The Model indicates that teams would score a 
touchdown on 30.0% of drives but in reality, touchdowns were scored on 31.3% 
of drives, a difference of 1.3%; the average deviation among absorbing states is 
0.78%. 

Last, we will look at situation (3).  Again, we have a sample size issue of 
only 45 such situations occurring, so we will include 3rd-and-1 from the 
opponent’s 18 through 12, giving us a slightly better frequency of 235.  Here, the 
biggest difference is also in touchdowns scored.  The model estimates 37.9% of 
drives containing a 3rd-and-1 from the 15 will end in touchdowns, but over the 5-
year period, 45.1% of those drives actually resulted in touchdowns, a difference 
of 7.2%.  The average deviation for situation (3) was 1.9% among the absorbing 
states. 

The difference in touchdown probability for situation (3) is mirrored by 
field goal probability. Field Goals were converted 6.8% less than expected by the 
model, which would lead to the conclusion that teams were converting to a new 
set of downs more frequently than the model suggests.  This makes sense since 
the model groups 3rd-and-1 in with 3rd-and-5, with conversion becoming less and 
less likely as the yards-to-go increases. 

So, what is the actual difference between a 3rd-and-1 and a 3rd-and-5 
across the field? This is important to know since our model groups the two 
together to ensure high enough frequencies.  Out of all the grouped distances-to-
go, 3rd-and-1 to 3rd-and-5 is the most questionable.  We would expect the biggest 
differences to be when a team could easily convert on 3rd-and-1 versus 3rd-and-5, 
which leaves us with three primary absorbing states—touchdown, field goal, punt.  
The average deviation between actual results in these two situations across the 
field is 5.5% with the largest being punt (11.2%), touchdown (10.9%) and field 
goal (9.2%).  No other absorbing state has a deviation over 5%.  While clustering 
these distances-to-go is not optimal, it is necessary to ensure high enough 
frequencies.  As a result, when using these results for analysis, the probabilities 
and expected points can be adjusted slightly for touchdowns, field goals, and 
punts accordingly.  We know that converting a 3rd-and-1 will be easier, so the 
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corresponding touchdown probabilities will increase for 3rd-and-1 situations 
above the results from the model.  
 
Expected Absorption Time 
 
Using our initial transition matrix, we can make a simple calculation to determine 
the expected number of steps before absorption.  That is, formula (6) gives an 
estimate for the length of remaining plays in a drive given that a team is in a 
specific state (Grinstead 1997). 
 
(6) t = [(I – Q)-1]c 
 
Vector t has 340 entries, each of which gives the expected number of plays before 
the chain is absorbed into a drive-ending state.  c is a vector with 340 entries, all 
of which are 1.  More specifically, we are summing the rows of matrix (I – Q)-1.  
For some situations, this may seem meaningless—obviously on a 4th-and-
extremely long, the drive should only last 1 more play.  But, for example, 
knowing that a 2nd-and-7 from the opponents 32 should last approximately 4.36 
more plays can help the play-calling process.  As mentioned, using all the 
information from the Markov chain can help build a basic structure for evaluation 
and decision-making.  The maximum expected time of absorption is 7.57 plays 
(for 1st-and-5 from a team’s own 16-20) and the minimum is 1 play.  Examples of 
expected number of plays before absorption can be found in Table 3. 
 
Expected Points 
 
The idea of expected points was first developed by Virgil Carter in “Operations 
Research4 ” and was refined in The Hidden Game of Football (Carroll, et al. 
1989).  More recently, studies have attempted to better estimate expected points 
after the realization that there is not a linear relationship between field position 
and expected points5.  The general concept is that for every down, distance, and 
yard line, we can assign a numeric value that represents the expected number of 
points a team will score. In other words, we have a function of the form EP = 
f(down, distance, yard line).  This can be calculated in two ways: using empirical 
game data and using the Markov model.  Generally, these values are determined 
as follows (empirically):  for down x, distance y, and yard line z, we look at every 
time a drive contained that situation in the play-by-play over several years and 
divide the total points scored over those drives by the number of drives in which 
                                                 
4 Published with the Cincinnati Bengals in 1971 
5 Including Brian Burke at advancedNFLstats.com, Aaron Schatz at FootballOutsiders.com, and 
Ben Alamar author of “Measuring Risk in NFL Playcalling” 
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our situation showed up.  For example, if 1st-and-10 from our own 20 showed up 
in 100 drives, and 14 of those drives scored touchdowns, 9 scored field goals, and 
1 was a safety, the expected points will be:  
 
EP1,10,20 = f(1,10,20) = 14*7 + 9*3 + (-2)*1 = 123 / 100 = 1.23 expected points 
 
A team gains 7 points for a touchdown, 3 for a field goal, and loses 2 for a safety 
since the other team gets 2 points6 .  The division by 100 represents the total 
number of drives during which our situation occurred. 

For our Markov expected points model, we use the absorption 
probabilities rather than making calculations directly from the play-by-play.  For 
each state, we use equation (7): 

 
(7) EPx,y,z = f(x,y,z) = ρv,TD*7 + ρv,FG*3 + ρv,SAF*(-2) 
 
Here ρv,a represents the probability of being absorbed in drive-ending state a 
given that a team is in state v.  v is a vector made up of down x, distance-to-go y, 
and yard line z.  For the above example of 1st-and-10 from the team’s own 20, if 
we use our model we get the following value: 
 
EP1,10,20 = f(1,10,20) = 0.138*7 + 0.093*3 + (-2)*0.002 = 1.24 expected points 
 
Examples of the expected points can be found in Table 3.  Since we are dealing 
with matrix manipulation, the expected points for every state can be found by 
multiplying the absorption probability matrix, B, by vector A, where vector A is 
made up of the values for each absorbing state—these values are 7 for a 
touchdown, 3 for a field goal, and -2 for a safety. The resulting vector will have 
the expected points for every state. 
 
 
 
 
 
 
 
 

 

                                                 
6 In reality, we use 6.96 for the touchdown since there is a 96% chance of making the extra point 
and it is extremely rare that teams go for a two-point-conversion. 
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In Figure 3, we see a graph of expected points from our absorption 
probabilities on 1st-and-10 or 1st-and-Goal situations: 
 

 
Figure 3 displays the expected points on 1st-and-10 or 1st-and-Goal based on the yards from 
opponent’s end zone.  Dots represent the actual calculation from absorption probabilities. 
 
Based on the above model, expected points gradually increase as we approach the 
opponent’s end zone. Even backed up against the goal line, a team is still 
expected to score around 0.72 points on the drive if it is first down. In contrast, a 
first down on an opponent’s 1-yard line is worth just less than six points (80.3% 
chance of a touchdown and 12.6% chance of a field goal). 

Expected points allow for a good measure of efficiency.  One example is 
the metric of Net Expected Points or NEP (Alamar 2010). NEP takes the 
difference in expected points between play n + 1 and play n to measure the 
efficiency of play n + 1.  By looking at the difference between expected points 
before a play and after a play, as well as any points scored on the play, we can 
calculate NEP. This shows how productive the team was versus the league 
average in a similar situation. If the NEP is positive, the team did better than 
expected; if negative, the team did worse.   

Let’s look at the 2010 Philadelphia Eagles.  The Eagles finished 10-6 atop 
the NFC East, but would lose to the eventual Super Bowl Champion Green Bay 
Packers.  Through 16 regular season games, the Eagles greatly increased their 
chances of scoring above the league average.  According to our model, 
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Philadelphia scored 50.68 points above expectation on offense and prevented 
25.19 points from being scored on defense.  On offense, however, they were only 
slightly above average in the passing game—adding 8.08 points above what a 
league-average offense would score if put in similar situations.  Their running 
game was the best in the league, thanks to Michael Vick.  The Eagles added 55.81 
points above expectation on rushing plays 7 .  This kind of complete analysis 
surrounding the Eagles could help the Eagles prepare for games—maybe rely 
more heavily on designed run plays for Vick—and could help opponents prepare 
more adequately for defending the run versus the pass.   

Table 2 displays overall, passing, and rushing efficiency numbers for each 
team over the course of the 2010 season.  On offense, teams above 0 performed 
above expectation; teams below 0 performed worse than expectation.  Conversely, 
on defense, teams below 0 performed above expectation and teams above 0 
performed below expectation.  You may notice that PNEP + RNEP ≠ NEP.  
This is because there are additional play types other than run or pass (including 
aborted snaps and penalties among others).  To calculate run and pass efficiencies, 
we take the net expected points on those specific play calls.  Since run and pass 
are not variables in the model, we calculate them both on the same expected 
points scale. This is because passing is generally the more efficient option.  
Otherwise, we could potentially have a team with an above average rushing 
efficiency (versus the rushing efficiencies of the rest of the league) but that could 
still be detrimental to the team given that passing is the better option.  This way, 
we can determine whether teams are performing above or below expectation on 
each play call. 

 
 

Table 2: 2010 Team NEP Based on Markov Model 
This table displays the total net expected points throughout the course of the 2010 season 
(similar to total runs added in baseball) on both offense and defense for all 32 NFL teams. 
PNEP and RNEP represent passing and rushing net expected points.  To calculate these, 
we look at the difference in expected points on pass play-calls and run play-calls. You will 
notice that it is more likely for a team to be above league-average passing the ball than 
running the ball, as passing is the more efficient option in general. NEP can also be looked 
at on a per play basis. 

 OFFENSE DEFENSE 

Team NEP PNEP RNEP D NEP D PNEP D RNEP 

ARI -208.56 -183.36 -14.13 -13.73 2.95 -18.07 

ATL 65.60 62.63 -10.22 -60.71 -48.55 -14.46 

                                                 
7 Rushing (55.81) + Passing (8.08) > Total Offense (50.68) due to pre-snap penalties (listed as No 
Play) and aborted snaps, which both typically decrease a team’s chance of scoring. 
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BAL -9.88 8.22 -19.68 -85.66 -52.87 -31.62 

BUF -135.22 -92.78 -31.91 37.01 28.60 25.76 

CAR -242.26 -175.43 -50.42 -29.94 -15.12 -3.35 

CHI -109.96 -74.27 -32.29 -142.58 -91.68 -30.95 

CIN -83.14 -30.82 -60.15 -13.18 -22.51 11.37 

CLE -95.02 -79.50 -22.13 -29.14 -11.58 -9.87 

DAL -18.73 -3.74 1.19 -3.08 23.47 -12.85 

DEN -56.39 -3.99 -38.45 72.53 47.25 22.34 

DET -52.46 -17.76 -27.90 -23.55 -32.03 20.56 

GB 51.28 66.33 -12.90 -144.30 -110.52 -21.89 

HOU 71.46 26.12 37.97 116.87 105.01 13.76 

IND 60.78 64.10 -11.94 -6.56 -0.63 15.90 

JAC -13.28 -48.75 42.58 84.35 72.81 13.89 

KC -6.15 12.16 -10.75 -65.43 -36.54 -18.17 

MIA -102.68 -58.48 -31.60 -60.96 -3.12 -36.86 

MIN -138.63 -116.17 -0.74 -43.20 -7.43 -29.11 

NE 169.73 119.04 52.19 -53.23 -52.77 0.43 

NO 29.41 53.88 -15.75 -48.20 -32.23 -13.54 

NYG -36.50 -11.87 -17.44 -115.02 -99.77 -2.07 

NYJ -50.31 -42.46 -0.92 -68.75 -28.04 -40.65 

OAK -35.23 -42.51 14.87 -24.83 -23.56 -15.70 

PHI 50.68 8.08 55.81 -25.19 -15.33 -19.98 

PIT 15.47 40.37 -10.48 -154.30 -119.02 -34.16 

SD 56.92 91.72 -19.53 -109.90 -87.39 -20.85 

SEA -134.48 -99.52 -23.83 12.00 19.23 -0.55 

SF -77.51 -65.49 -10.93 -64.66 -23.73 -33.80 

STL -81.22 -58.85 -18.65 -74.20 -40.92 -20.43 

TB 6.44 24.31 -3.74 -52.61 -47.48 1.35 

TEN -39.15 -9.26 -24.20 -37.68 -9.95 -32.33 

WAS -94.40 -68.81 -19.31 -15.58 6.58 0.53 
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This metric has been used to evaluate offensive play calling8 as well as determine 
the relative importance of offense, defense, and special teams within the NFL 
(Goldner 2010).  
 
Conclusion 
 
By determining the transition probabilities between any possible states on the 
football field, we are able to model a football drive by using an absorbing Markov 
chain.  While the accuracy of the model can be increased slightly by separating 
late-game situations and adding more data to ensure higher frequencies, our 
model gives a solid framework for basic analysis.  Teams can compare their 
actual performance against the model as well as gain a greater understanding on a 
situational level.  Additionally, the absorption probabilities lead us to an accurate 
expected points model, which can be used to measure the efficiency of plays, 
players, and teams. 
 
 

                                                 
8 Ben Alamar used it to measure risk of play-calling in the NFL (Alamar 2010) 
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Table 3: Select Absorption Probabilities based on Down, Distance, Yard line 
This table shows absorption probabilities, expected points (EP), and expected plays remaining based on down, distance‐to‐go, and yard line 
for select situations across the field. 

Yard line  Down  Distance  Downs  Fumble  Int  Punt  Missed FG  Field Goal  TD  Safety  EndHalf/Game  EP  E[Plays Remaining] 

OWN 20  1  10  2.85%  5.12%  9.07%  49.80%  2.08%  9.30%  13.84%  0.15%  7.81%  1.24  6.65 

OWN 20  2  10  2.49%  4.57%  7.92%  59.41%  1.69%  7.55%  11.45%  0.18%  4.74%  1.02  5.65 

OWN 20  3  10  1.84%  3.86%  6.84%  70.27%  1.14%  5.10%  7.94%  0.13%  2.88%  0.70  3.94 

OWN 20  4  10  0.36%  0.09%  0.15%  98.71%  0.05%  0.22%  0.31%  0.01%  0.11%  0.03  1.12 

OWN 40  1  10  4.07%  5.11%  8.95%  37.16%  3.37%  14.81%  20.75%  0.01%  5.78%  1.89  6.41 

OWN 40  2  10  3.86%  4.68%  7.91%  46.26%  2.89%  12.59%  17.31%  0.01%  4.50%  1.58  5.54 

OWN 40  3  10  3.11%  3.11%  5.75%  63.13%  1.96%  8.48%  11.58%  0.01%  2.88%  1.06  3.99 

OWN 40  4  10  0.97%  0.90%  0.39%  96.25%  0.12%  0.54%  0.71%  0.00%  0.12%  0.07  1.16 

OPP 40  1  10  5.31%  4.34%  7.80%  16.74%  5.86%  24.13%  31.05%  0.01%  4.76%  2.88  5.66 

OPP 40  2  10  6.22%  3.60%  6.61%  26.08%  5.36%  21.32%  26.99%  0.01%  3.80%  2.52  5.03 

OPP 40  3  10  6.35%  2.86%  4.98%  45.65%  3.80%  14.85%  19.08%  0.01%  2.43%  1.77  3.68 

OPP 40  4  10  6.20%  1.07%  0.68%  86.84%  0.38%  1.80%  2.54%  0.00%  0.50%  0.23  1.32 

OPP 20  1  10  3.29%  3.48%  5.02%  1.06%  5.27%  35.27%  43.89%  0.01%  2.71%  4.11  4.33 

OPP 20  2  10  3.80%  2.65%  4.63%  1.23%  7.05%  41.09%  37.35%  0.01%  2.20%  3.83  3.73 

OPP 20  3  10  4.48%  1.82%  3.89%  1.22%  10.83%  50.55%  25.44%  0.01%  1.76%  3.29  2.71 

OPP 20  4  10  5.87%  0.08%  0.79%  0.19%  18.48%  72.31%  1.85%  0.00%  0.41%  2.30  1.11 

OPP 1  1  1  2.04%  1.89%  2.02%  0.11%  0.41%  12.58%  80.27%  0.03%  0.65%  5.96  2.26 

OPP 1  2  1  3.57%  1.72%  2.16%  0.10%  0.55%  19.52%  71.55%  0.05%  0.78%  5.56  2.03 

OPP 1  3  1  6.81%  1.33%  1.96%  0.09%  0.77%  33.01%  55.16%  0.09%  0.77%  4.83  1.68 

OPP 1  4  1  14.98%  1.40%  0.40%  0.16%  1.04%  63.23%  18.41%  0.01%  0.36%  3.18  1.12 
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