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 General

 Tiered Polychotomous Regression: Ranking NFL Quarterbacks
 Chris WHITE and Scott BERRY

 Multinomial response modeling is still in debate, with numer-
 ous parametric and nonparametric methods being popular. We
 investigate a tiered logistic regression technique that can handle
 complex functional forms while still maintaining a parametric
 framework. Using our model, we find the value of different plays

 in the NFL. We apply these results to ranking NFL quarterbacks
 and compare our rankings to the rankings found using the NFL
 quarterback rating. The main application of this article is to a
 sports topic, but our model could be used in any polychotomous
 regression setting.

 KEY WORDS: BIC; Logistic; Multinomial.

 1. INTRODUCTION

 In the National Football League, the official measure of a quar-

 terback's performance is his "quarterback rating." This rating is
 used to rank quarterbacks and is so widely accepted that it is used
 in some contracts as an incentive. Quarterback Donovan McN-
 abb has an incentive clause in his contract with the Philadelphia
 Eagles that pays him a bonus if his quarterback rating is 100
 or above. Akili Smith, Tony Banks, and many others have also
 signed contracts that include bonuses if their quarterback ratings
 are above a certain threshold. It is by far the most widespread
 measure used to rank and differentiate quarterbacks.

 The NFL quarterback rating is a linear combination of four
 categories: completion percentage, (average) yards per pass, (av-
 erage) touchdowns per pass, and (average) interceptions per
 pass. It is the sum of the following four parts, multiplied by
 100.
 6 '

 . Completion percentage-0.3
 0.2

 2. Yards per pass attempt-3
 4

 Touchdowns per pass attempt
 3 .0.05
 4 0.095-Interceptions per pass attempt

 0.04

 Each of the above parts is truncated to be between 0 and 2.375.
 Thus, any negative values are set to 0 and any values greater than
 2.375 are set to 2.375.

 Chris White is Statistician at M. B. Flippen & Associates, 1199 Haywood, Col-
 lege Station, TX 77845 (E-mail: chris@leadershipsolutions.com). Scott Berry is
 Statistician at Berry Consultants, 1039 Wellington Court, Sycamore, IL 60178
 (E-mail: scott@berryconsultants.com).

 As an example, consider Randall Cunningham's 1998 season.
 He had 259 completions out of 425 attempts for 3,704 yards. He
 had 34 touchdown passes and 10 interceptions. For his season:

 259 -0.3
 1. 42 = 1.5471

 0.2
 3704 3

 2. 425 = 1.4288
 4

 3. 425 - 1.6000
 0.05
 0.0953 =L

 4. ? ?o425 = 1.7868.
 0.04

 So Randall Cunningham's 1998-1999 NFL rating is (1.5471 +
 1.4288 + 1.6000 + 1.7868) * 10 = 106.045. In this rating, all
 incompletions are equivalent, and all interceptions count equally
 against a quarterback. Similarly, all 20-yard touchdown passes
 are considered equal, regardless of the circumstance, and the
 above categories ignore sacks and fumbles.

 To illustrate some of the drawbacks in more detail, consider

 the following examples from the 1998 NFL season. In week 3,
 Jeff George of the Oakland Raiders faced an intense pass rush on
 first down and 10 from the Denver Bronco 10-yard line and was
 sacked for an 11-yard loss. In week 10, Trent Dilfer of the Tampa
 Bay Buccaneers faced a first down and 10 from the Tennessee
 Oiler 10-yard line. He sensed a strong pass rush and threw the
 ball away for an incompletion, which is a much better alternative
 than being sacked for an 11-yard loss. The NFL quarterback
 rating penalizes quarterbacks for incompletions such as Dilfer's
 but does not penalize quarterbacks for sacks. Dilfer's team was
 better off because he threw the ball away for an incompletion,
 but the NFL rating penalizes him for this while George's rating
 is unaffected.

 It would also be advantageous to fumble rather than throw an
 incompletion. In the 1998 week 15 San Diego Chargers versus
 Seattle Seahawks game, Ryan Leaf faced a second down and 14
 and fumbled as he was being sacked. The fumble was returned
 by the defense for a touchdown, but the NFL rating does not
 penalize him. Leaf's team would have been much better off if
 he had simply thrown the ball away for an incompletion, but
 again the NFL rating would penalize him for this.

 In week 10, the New Orleans Saints played the Minnesota
 Vikings and Brad Johnson of the Vikings faced a third down and
 3 from the New Orleans five-yard line. He threw an interception
 that was returned 95 yards for a touchdown. In contrast, John
 Elway threw an interception on third down and 21 from his
 own 35-yard line in the week 6 Denver Broncos versus Seattle
 Seahawks game. The pass traveled 47 yards with no return on
 the interception. Both of these plays would count equally against
 each quarterback in the official quarterback rating, despite the
 fact that Brad Johnson severely hurt his team, while Elway's
 interception was better than most punts.
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 Finally, in the week 4 Minnesota Vikings versus Chicago
 Bears game, Erik Kramer-facing first down and 10-threw
 a 23-yard touchdown pass. In the week 2 Arizona Cardinals
 versus Seattle Seahawks game, Jake Plummer threw a 23-yard
 touchdown pass facing fourth down and 16. Fourth down and
 16 is a much more difficult situation, given that you must get 16
 yards in a single play, along with the fact that the defense is ex-
 pecting a pass. Thus, should both of these plays count equally in
 measuring a quarterback or should Plummer be rewarded more?

 We propose a method for rating quarterbacks (U. S. Patent
 Pending) that better measures the contribution to the team. We
 assign a value to each play and use these values to summarize a
 quarterback's effectiveness. A quarterback's ultimate goal is to
 win the football game, so one option would be to determine how
 much each play contributed toward or against the probability of
 winning. Because of multiple types of scores and a continuous
 clock it is very difficult to measure the probability of winning.
 The method we propose rewards or penalizes the quarterback
 according to the "expected points" gained or lost on each play.
 A football team is not necessarily trying to maximize the number
 of points scored on the given play, nor is a team attempting to
 maximize the number of points scored on the drive. If so, no team
 would ever punt. Teams are trying to maximize the number of
 points scored eventually, which is why teams punt. They hope to

 pin the other team back, not allow them to advance, and then get
 the ball back in good field position and be the next team to score.
 Since this is what teams are maximizing, we model eventual
 points scored as our response variable. This article uses the term
 expected points to refer to expected eventual points. Stern (1998)
 modeled eventual points on first down and 10 from various field
 positions using a least squares approach.

 Assume that teams score an average of 3.9 eventual points
 on third down and 5 from the other team's 10-yard line. Then if
 the quarterback throws a touchdown pass, he basically "gained"
 3.1 points for his team (7 points - 3.9 points). If he throws
 an interception that is run back for a touchdown, then he "lost"
 10.9 points for his team (lost 3.9 points in addition to the 7-point
 touchdown). If he throws an incomplete pass, then his team faces
 a fourth down and 5 from the 10-yard line, where teams score
 an average of, say, 2.5 eventual points. Thus, an incompletion
 would cost his team 1.4 points (3.9 points - 2.5 points). Using
 this approach, quarterbacks are rewarded or penalized according
 to the value of the play, instead of having all 10-yard touchdown
 passes count equally, all interceptions count equally, and so on.

 Numerous game situations affect expected points; the down,
 the yards to first down, the yard line, the time remaining, the
 score, the caliber of the defense, and so on. We focus on three

 explanatory variables: down (denoted "Down"), yards to go for a
 first down (denoted "ToGo"), and yards to the goal line (denoted
 "ToGoal"). To measure the differential points on each play, we
 create a model for the expected points as a combination of Down,
 ToGo, and ToGoal. Taking the difference between the expected
 points before and after a play measures the "value" of the play.
 We use the average value of all plays for each quarterback to
 rank them.

 We fit a polychotomous regression model to estimate the ex-

 pected number of points for each game situation. We use play-
 by-play data from the 1998 NFL season. Section 2 describes the
 data. Section 3 describes the tree-based polychotomous regres-

 sion model. Section 4 describes how the model measures the

 impact of a play by reviewing each of the scenarios presented
 in the introduction. Section 5 presents quarterback rankings for
 1998 and compares them to the NFL rating system. Concluding
 remarks are presented in Section 6.

 2. THE DATA

 The original play-by-play data was in the format presented
 in Figure 1, using the first three possessions of the 1998-1999
 Dallas Cowboys versus Arizona Cardinals game in week 11
 of the season as an example. We wrote a program to create
 a structured dataset containing our variables of interest from
 this prose-based file. Our full dataset consisted of each play
 from the 1998-1999 season, which was more than 35,000 plays.
 The play-by-play data follow a common structure for each play
 which allows us to restructure the information into a dataset

 that includes only the relevant information. The Figure 1 data
 was restructured into the Figure 2 data. In the Figure 2 output,
 eventual points are in the last column. To find the eventual points
 for a given play, determine which team scored next. If the same

 team scored next, then the eventual points for the current play
 would be equal to how many points were scored. If the other
 team scored, eventual points would be equal to the negative
 of the amount that the other team scored. For example, in the
 Figure 1 output Dallas had the ball first and did not score on
 the drive. Arizona did not score on the subsequent drive. On the
 next drive, Dallas scored 7 points on a touchdown. Thus, each
 play on the scoring drive receives 7 eventual points. Each play
 on the Arizona drive receives -7 eventual points and each play
 on the first Dallas drive receives 7 eventual points.

 We pooled eventual points that were -6 or -8 to be -7 and
 pooled points that were 6 or 8 to be 7. We want all touchdowns to

 count equally, without regard to the extra point. If neither team
 scored before the end of the first half or the end of the game,
 then eventual points for plays after the last score were recorded
 as zero.

 3. EXPECTED POINTS MODEL

 The three explanatory variables are Down, ToGo, and ToGoal.
 The possibilities for down are {1, 2, 3, 4}. We do not want to
 force the difference between first down and second down to be

 the same as the difference between third down and fourth down.

 This would be unrealistic, since moving from third down to
 fourth down is usually more costly in terms of expected points
 than moving from first down to second down. Thus, we use
 dummy variables for each down. Since down has four possi-
 bilities, we use three dummy variables. Thus, D2, D3, and D4
 denote indicator variables for second, third, and fourth down,

 respectively. To model expected points from D2, D3, D4, ToGo,
 and ToGoal, we develop a model for the probability of each of
 the seven possible outcomes. From each situation, a team could
 eventually score a touchdown (+7), kick a field goal (+3), record
 a safety (+2), allow a safety (-2), allow a field goal (-3), allow

 a touchdown (-7), or no points could be scored. To estimate
 the expected points we average over the probabilities of each
 outcome to find the expected eventual points. Estimating the
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 J.Nedney kicks 69 from AC30 to DC1, C.Warren ret. to DC24 for 23 (M.Maddox).

 Dallas Cowboys at 15:00
 1-10-DC24 T.Aikman pass incomplete to D.Johnston.
 2-10-DC24 T.Aikman pass to B.Davis to DC43 for 19 yards (T.Knight). P1
 1-10-DC43 E.Smith right end to DC44 for 1 yard (J.Miller).
 Dallas Cowboys time out at 15:00. First time out.
 2-9-DC44 E.Smith up middle to DC46 for 2 yards (R.McKinnon, T.Bennett).
 3-7-DC46 T.Aikman (shotgun) pass incomplete (T.Bennett). Aikman hit when
 throwing.
 Arizona Cardinals time out at 15:00. First time out.

 4-7--DC46 T.Gowin punts 48 yards, out of bounds at AC6, Center-D.Hellestrae.

 Arizona Cardinals at 12:33
 Official time out at 12:33.
 1-10-AC6 J.Plummer pass to J.McWilliams to AC14 for 8 (R.Godfrey,
 O. Stoutmire).-
 2-2-AC14 A-Murrell left end to AC15 for 1 yard (C.Hennings, D.Coakley).
 3-1-AC15 J.Pluxmmer pass to F.Sanders, P-OOB at AC29 for 14 yards
 (D. Woodson).-
 AC-J.Dexter PENALIZED 5 yards for Illegal Formation. No Play
 3-6-AC10 J.Pluimmer pass to E.Metcalf to AC20 for 10 yards (G.Teague). P1
 1-10-AC20 J.Plummer pass incomplete to R.Moore.
 Arizona Cardinals time out at 12:33. Second time out.

 2-10-AC2O J.Plummer pass incomplete to J.McWilliams.
 3-10-AC20 12 men in huddle
 AC-F.Brock PENALIZED 5 yards for Illegal Substitution. No Play
 3-15-AC15 J.Plummer pass to L.Centers to AC10 for -5 yards (O.Stoutmire).
 4-20--AC1O S.Player punts 48 yards to DC42, Center-T.Junkin. D.Sanders ret.
 to DC43 for 1 yard (K.Lassiter).

 Dallas Cowboys at 9:27
 Official time out at 9:27.
 1-10-DC43 T.Aikman pass to E.Mills to AC42 for 15 (T.Knight, R.McKinnon). P2
 1-10-AC42 E.Smith right end to AC35 for 7 yards (J.Miller).
 2-3-AC35 E.Smith right tackle to AC17 for 18 (A.Wadsworth, R.Swinger). R3
 1-10-AC17 E.Smith right end, pushed out of bounds at AC3 for 14 yards
 (T.Bennett). Aikman handed to Mills who pitched to Smith. R4
 *1-3-AC3 C.Warren left guard for 3 and TOUCHDOWN. R5
 *R.Cunningham, extra point is GOOD. Center-D.Hellestrae.
 Holder-E .Bj ornson.

 ?~~DC 7 AC 0, 5 plays, 57 yards, 2:42 drive, 8:15 elapsed =

 Figure 1. Original play-by-play data.
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 Yards Play Eventual
 Down ToGo Gained ToGoal Player Type Points
 1 10 0 76 T.Aikman pass 7
 2 10 19 76 T.Aikman pass 7
 1 10 1 57 E.Smith run 7
 2 9 2 56 E.Smith run 7
 3 7 0 54 T.Aikman pass 7
 4 7 48 54 T.Gowin punt 7
 1 10 8 94 J.Plummer pass -7
 2 2 1 86 A.Murrell run -7

 3 1 -5 85 J.Plummer penalty -7
 3 6 10 90 J.Plummer pass -7
 1 10 0 80 J.Plummer pass -7
 2 10 0 80 J.Plummer pass -7

 3 10 -5 80 Team penalty -7
 3 15 -5 85 J.Plummer pass -7

 4 20 47 90 S.Player punt -7
 1 10 15 57 T.Aikman pass 7
 1 10 7 42 E.Smith run 7
 2 3 18 35 E.Smith run 7
 1 10 14 17 E.Smith run 7
 1 3 3 3 C.Warren run 7

 Figure 2. Structured data.

 probability of k > 2 outcomes from explanatory variables is
 referred to as polychotomous regression.

 The response variable expected points has the seven out-
 comes {-7, -3, -2, 0, 2, 3, 7}. McCullagh and Nelder (1989)
 discussed various models for polychotomous regression, in-
 cluding an example of tiered logistic regression, which they
 referred to as nested or hierarchical response modeling. Hos-
 mer and Lemeshow (1989) described multiple logistic regres-
 sion (multiple independent variables) and also briefly described

 the polychotomous regression setting. Kooperberg, Bose, and
 Stone (1997) described model selection procedures and intro-
 duced a polychotomous regression algorithm involving linear
 splines. They discussed maximum likelihood estimation, step-
 wise selection in model fitting, the Akaike information criterion,

 cross-validation, and the use of an independent test set in the

 model selection stage. The authors applied their procedure to a
 phoneme recognition dataset. Albert and Chib (1993) presented
 a Bayesian approach to polychotomous response data using the
 idea of data augmentation.

 This article uses a tiered logistic regression model. The re-
 sponse variable in logistic regression has two possible outcomes,
 while in our problem the response variable, eventual points, has

 seven outcomes. To fit a tiered logistic regression model, we split
 the outcomes into k - 1 tiers, where k is the number of outcomes.

 Here we have seven outcomes, so we split the outcomes into six
 pairs, structured as in Figure 3. There are numerous choices for
 how to split the outcomes so we chose one that was nicely orga-
 nized. For a discussion of the effect of different tier structures see

 White (2000). At each dichotomous split we fit a logistic regres-
 sion model. In Figure 3, each of the terminal nodes represents
 an outcome. To obtain the probability of a particular outcome,

 multiply the appropriate probabilities for the tiers leading to the
 terminal node of interest. For example, the outcome "no points"
 involves only the first tier. To find the probability of "no points,"

 find the probability of 0 (i.e., no success) in the first-tier logistic
 regression. To find the probability of "negative safety," use tiers
 1, 2, and 4. In the first tier and the fourth tier, find the probabil-

 ity of a success, and in the second tier find the probability of no
 success. Multiplying the three probabilities together gives us the
 probability of the next score being a safety for the other team.

 We present the mathematical details for this model. Let Yi be
 the outcome for play i, for i = 1,..., n, and let the vector Xi be
 the independent variables for play i; thus, Xi = (D2i, D3i, D4i,
 ToGoi, ToGoali). Now consider a tier indicator for the outcome
 of play i, denoted bi = (Q1i, bi/2, qi3, <i4, qi5, qi6), where

 1 if tier t is used in the outcome for play i
 ?it - 0 otherwise.

 For example, considering the "no points" outcome in Figure 3,
 the only tier involved is tier 1. Thus for all "no points" plays,
 /i = (1, 0, 0, 0, 0,). For the seven outcomes,

 (1,1,0,1,0,1) if
 (1,1,0,1,0,1) if
 (1, 1,0, 1,0,0) if
 (1,0,0,0,0,0) if
 (1, 1, 1,0,0,0) if
 (1,1,1,0,1,0) if
 (1,1,1,0,1,0) if

 Yi = -7
 Yi = -3

 Yi = -2
 Y~=0
 Y = +2

 Yi = +3

 Yi =+7.

 For each play i, let the vector Ai = (Ail, Ai2, Ai3, Ai4, Ai5, Ai6)
 be the left indicator, where

 1 if the outcome for play i requires a left at tier t
 ij 0 otherwise.

 The American Statistician, February 2002, Vol. 56, No. 1 13
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 +TD + FGJ -TD FG
 Figure 3. Tiers for the outcomes, with each tier numbered.

 For the outcome "positive touchdown" in Figure 3 we need to
 go left at tiers 1, 2, and 5. Thus, for any "positive touchdown"
 play, Ai = (1, 1, 0, 0, 1, 0). Similarly, the seven outcomes are

 (1,0,0,0,0,1) if
 (1,0,0,0,0,0) if
 (1,0,0,1,0,0) if
 (0,0,0,0,0,0) if
 (1, 1, 1,0,0,0) if
 (1,1,0,0,0,0) if
 (1,1,0,01,0) if

 Yi =-7
 Yi =-3
 Yi =-2
 Yi=0
 Y =+2

 Yi =+3
 Yi =+7.

 This notation creates a convenient characterization of each out-

 come. Finally, let nt denote the number of plays at each tier t,
 as delineated in Figure 3. For play i with independent variables

 Table 1. Explanatory Variables Considered

 Fit # Explanatory variables

 1 D2, D3, D4, ToGo, ToGoal
 2 D2, D3, D4, sm(ToGo), ToGoal
 3 D2, D3, D4, ToGo, sm(ToGoal)
 4 D2, D3, D4, ToGo, ToGoal, ToGo*ToGoal
 5 D2, D3, D4, sm(ToGo), sm(ToGoal)
 6 D2, D3, D4, sm(ToGo), sm(ToGoal), ToGo*ToGoal
 7 D2, D3, D4, sm(ToGo), sm(ToGoal), sm(ToGo*ToGoal)
 8 sm(ToGo), sm(ToGoal), separately for each down
 9 sm(ToGo), sm(ToGoal), sm(ToGo*ToGoal),

 separately for each down

 Xi, the probability of outcome Yi is

 6 - exp(Lt)Xit P(YiIXi,Ll,...,L6) -= +exp(Lt)' fit+(1-it) ,
 11 I+?exp(Lt) t=1 -

 where Lt is the logit function at tier t. The likelihood function
 is

 f(Y|Xl,..., Xn,, L,... ,L6)
 n

 =nP(YlXi)

 H tl 1 + exp(Lt) it 1- i=1 t:1

 6 exp(Lt)it -
 =H tii:0jt=} 1 + exp(Lt) t=l {i:?it=l}-+ (

 The problem is now reduced to fitting k - 1 = 6 logistic re-
 gressions. One option would be to fit the usual linear logistic
 regression model at each tier. Another choice would be to fit
 a more complicated model at each tier, such as one that uses
 smoothed versions of the variables. We decided to determine the
 best model at each tier and then use the combination of the six
 best models as our overall model. We used S-Plus to fit models

 with various explanatory variables at each tier, shown in Table
 1. In Table 1, sm(.) represents a nonlinear smoothed version
 of the variable in parentheses (estimated using cubic B-splines)
 and ToGo*ToGoal is the interaction term ToGo multiplied by
 ToGoal.

 At each tier, we calculate the Bayesian information criterion
 (BIC) for each model and chose the model with the minimum

 14 General
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 Table 2. Minimum BIC Models at Each Tier

 Tier Model with Minimum BIC

 1: Points vs. No Points D2, D3, D4, ToGo, sm(ToGoal)
 2: Pos. Points vs. Neg. Points D2, D3, D4, ToGo, sm(ToGoal)
 3: Pos. Safety vs. Other Pos. Score D2, D3, D4, ToGo, ToGoal
 4: Neg. Safety vs. Other Neg. Score D2, D3, D4, ToGo, sm(ToGoal)
 5: Pos. TD vs. Pos. FG sm(ToGo), sm(ToGoal), separately for each down
 6: Neg. TD vs. Neg. FG D2, D3, D4, ToGo, ToGoal

 BIC as the best model. The BIC, due to Schwarz (1978), was
 discussed by Kass and Raftery (1995). It is beneficial in selecting
 between models because it takes into account the likelihood

 but also realizes that models with more terms will have higher
 likelihoods. Because of this, a "penalty" term is included in the
 BIC that penalizes models with more degrees of freedom. In our
 case, the BIC at a particular tier t is

 BIc -2. -. ;jexp(Lt)At - 1 BIC -2 log + exp(Lt)t 1 dtlog(nt)
 I - - lo 1 + exp(Lt) 2

 where

 dt = model degrees of freedom for Lt.

 By using the BIC form as stated, one problem arises. Finding
 the minimum BIC at each tier does not necessarily assure us of
 ending up with the overall combination of six models that has
 overall minimum BIC. To remedy this issue, we minimize an
 alternative form of the BIC at each tier that uses log(n) instead
 of log(nt). This alternative form is written as

 BIC* = -2. log 1 exp(Lt) )t l log1 + exp(Lt) 2dtlog(ri

 where the only difference is the last term. BIC* is a form of the

 BIC that penalizes even more for additional terms in the model.
 Using this form of the BIC at each tier, the overall BIC can
 simply be written BIC = BICT + BIC* +... + BIC*. In this
 case, finding the minimum BIC* at each tier does ensure finding
 the model with overall minimum BIC. The proof of this result
 is presented in Appendix A.

 The explanatory variables that had the minimum BIC at each
 tier are presented in Table 2. At the first tier (points vs. no points)
 we have the prediction equation

 logit(Ppoints)
 = 2.315 - 0.013 D2 - 0.046 D3

 -0.189 D4 - 0.017 ToGo + sm(ToGoal)

 = Li

 which we can convert from logit scale to probability scale using

 _ exp(Li) Ppoints -- ep
 + exp(L1)

 We estimated the logit equation using S-Plus, with the command

 logisticl < -gam(Y1 ~ D2 + D3 + D4
 +ToGo + s(ToGoal), family = binomial).

 At the second tier (+ points vs. - points) we have

 logit(P+points) = 3.074 - 0.177 D2
 -0.439 D3 -0.831 D4

 -0.009 ToGo + sm(ToGoal)

 = L2.

 At the third tier (+ safety vs. other positive score) we have

 logit(P+safety) -5.558 + 0.118 D2
 +0.465 D3 + 0.667 D4 - 0.016 ToGo

 +0.011 ToGoal

 = L3.

 At the fourth tier (- safety vs. other negative score) we have

 logit(P-safety) = -6.908 + 0.145 D2 + 0.215 D3
 -0.032 D4 + 0.008 ToGo + sm(ToGoal)

 L4.

 At the fifth tier (+ touchdown vs. + field goal) we have

 logit(P+TD) = (sml(ToGo) + sm2(ToGoal)) . D1
 +(sm3(ToGo) + sm4(ToGoal)) ? D2

 +(sm5(ToGo) + sm6(ToGoal)) . D3

 +(sm7(ToGo) + sm8(ToGoal)) ? D4

 = L5,

 where D1 is defined in the same manner as D2, D3, and D4, that
 is,

 _ f 1 if down 1
 D- 0 if down 741.

 The subscripts on the smoothed independent variables (e.g.,
 sml (ToGo)) were used to make it clear to the reader that separate
 smoothing functions were fit for each down. At the final tier (-
 touchdown vs. - field goal) we have

 logit(P_TD) = 0.476 - 0.026 * D2
 -0.031 * D3 - 0.040 * D4

 +0.00063 * ToGo - 0.00016 * ToGoal

 = L6.

 As mentioned earlier, we determine the predicted probability of
 a particular outcome by multiplying the applicable probabilities
 from each tier. For example, to find the predicted probability of
 a touchdown while facing first down and 10 with 10 yards to the
 goal, we use the probabilities given in Figure 4.

 The American Statistician, February 2002, Vol. 56, No. 1 15

This content downloaded from 152.2.176.242 on Wed, 16 Oct 2019 03:30:35 UTC
All use subject to https://about.jstor.org/terms



 0.940

 0.042

 0.009  0.991

 + TDJ +eFGJ I-TDJ -FGJ
 Figure 4. Logistic regression probabilities for first down and 10, 10 yards to goal.

 The predicted probability of positive touchdown (vs. positive
 field goal) in the left bottom tier is P+TD = 0.637. Continu-
 ing up the diagram, we find that the predicted probability of an

 "other positive score" (vs. positive safety) is Pother pos. score =
 0.996. The predicted probability of positive points (vs. nega-
 tive points) is P+points = 0.958, and the predicted probability of

 points scored (vs. no points scored) is Ppoints = 0.940. Multiply-
 ing these together, we get the predicted probability of a positive
 touchdown to be (0.637)(0.996)(0.958)(0.940) = 0.571. The pre-
 dicted probabilities of the other six outcomes can be found in
 a similar manner, where the predicted probability of a positive
 field goal is 0.326, a positive safety is 0.00332, a negative safety
 is 0.000374, a negative field goal is 0.0150, a negative touchdown
 is 0.0243, and no points is 0.0598. Note that the probabilities do
 sum to 1.

 To find the predicted expected points, we simply weight each

 outcome by its probability, which results in 4.77 predicted ex-

 pected points. Figure 5 shows the expected points for downs

 1 through 4 with 10 yards to go. Figure 6 presents three-
 dimensional graphs of the seven outcome probabilities for first

 down. Each of the graphs in Figure 6 is consistent with conven-

 tional wisdom. The probability of 0 eventual points decreases

 as a team gets closer to the opponent's goal line. Similarly, the

 probability of the opponent scoring a touchdown or field goal

 also decreases as a team gets closer to the opponent's goal line.

 The probability of the opponent scoring a safety is relatively high

 when you are close to your own goal line, and the probability of

 a touchdown gets higher as a team gets closer to the opponent's

 goal line and as yards to first down decreases. It is worth men-

 tioning again that we are displaying the probability of eventual

 outcomes-not outcomes on the next play. The probability of a

 field goal on the next play when 99 yards from the goal line is

 zero. In our graph, this probability is not zero. This is because

 we found the probability of three eventual points, meaning the

 probability that the next score in the game will be a field goal
 for the current offensive team.

 .....44^^33^ ^ ^We present outcome probability graphs for two fourth down
 111111112 1 ^outcomes in Figure 7. The probability of an eventual field goal

 increases steadily as a team crosses midfield until curving down

 slightly as a team gets within five yards of a touchdown. The

 probability of a touchdown increases as a team approaches mid-

 0 20 40 60 80 100 field and then starts to decrease (because now a field goal is more
 Yards to Goal likely) and then increases again when a team gets very close to

 Figure 5. Downs one through four with 10 yards to go. the opponent's goal line.
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 4. USING THE MODEL TO COMPARE PREVIOUSLY

 MENTIONED PLAYS

 We now use our model to revisit the plays discussed in the
 introduction. In the first scenario, Jeff George faced an intense
 pass rush on first down and 10 at the Denver 10-yard line which
 gives an expected points of 4.77. After being sacked for an 11-
 yard loss, Oakland faced a second down and 21 from the Denver
 21-yard line, which drops expected points to 3.68. Hence George
 (and the Oakland offense) lost 1.09 expected points on the play.
 In contrast, Trent Dilfer threw an incompletion from the same
 situation, resulting in second down and 10 from the 10. This puts
 his team in a position of 4.55 expected points, thus losing only
 0.22 expected points.

 When Ryan Leaf faced a second down and 14 with 57 yards
 to the goal line, the expected points were 0.95. By fumbling and
 then allowing Seattle to return the fumble for a touchdown, Leaf
 cost his team 7.95 points (0.95 + 7 points for touchdown). If he
 had simply thrown the ball away for an incompletion he would
 have only lost 0.53 expected points, but the NFL quarterback
 rating would penalize him for this incompletion while ignoring
 his fumble.

 Erik Kramer faced a first down and 10 and threw a 23-yard
 touchdown pass, going from 3.85 expected points to 7, thus
 gaining 3.15 expected points. Similarly, Jake Plummer threw a
 23-yard touchdown pass on fourth down and 16, going from 1.64

 expected points to 7. He gained 5.36 expected points. In the last
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 Figure 7. Predicted probabilities for eventualpoints of three (top) and
 seven (bottom), fourth down.

 two examples, the outcomes were the same but the downs were
 different. This illustrates the fact that the down has a big impact
 on the importance and the difficulty of the play.

 Finally, Brad Johnson threw an interception that was returned
 for a touchdown on third down and 3 from the 5-yard line. He
 lost 11.32 expected points, going from 4.32 to -7. John Elway
 faced a third down and 21 from his own 35-yard line and threw a
 47-yard interception with no return, going from -0.20 expected
 points to -0.19, thus gaining 0.01 expected points. This case
 illustrates that all interceptions are not the same-some can even
 be beneficial!

 5. USING THE MODEL TO RATE QUARTERBACKS

 To rate quarterbacks, we decided to exclude plays in the last
 two minutes of each half. We did this for various reasons, one of

 the reasons being that the winning team will often play a "prevent

 defense" which gives up small gains in hopes of preventing a
 score, and we did not want this to confound our results. We also

 included defensive pass interference plays as completed passes
 since they are positive plays for the passing team. Finally, we
 counted intentional grounding penalties as sacks, since there is
 a loss of yardage and loss of down.

 Although we refer to these as quarterback ratings they are cer-
 tainly confounded with the ability of the quarterback's offense.
 A great quarterback without good blocking or without good re-
 ceivers will have a low rating that might not be reflective of his
 true individual ability. Similarly, a quarterback who plays with a
 great running back is at an advantage since the defenses cannot
 concentrate on passes. Thus, it would be more accurate to say
 that we are ranking the offense's passing ability with the partic-
 ular quarterback in control. When comparing quarterbacks on
 the same team, such as Flutie vs. Johnson or Elway vs. Brister,
 we can better control for the strength of the offense. The NFL
 rating also does not account for this limitation. We also do not
 account for the strength of the defense. One quarterback could
 have had a more difficult schedule and thus faced more talented

 defenses. The NFL rating similarly does not account for this.
 To obtain our rankings, we use the expected point values pre-

 viously discussed. For each play, we took the difference between
 the end-result point value and the initial point value to get the
 value of the play. Once we determine the point value of each
 play, we find the average point value over all plays for each
 quarterback. Each average, along with the corresponding rank
 of each average, is presented in Table 3. All quarterbacks from
 1998-1999 who participated in a significant number of plays
 are included. We also include the NFL rating and corresponding
 rank for each quarterback in Table 3. Any differences between
 our ranking and the NFL ranking that are 10 or greater are de-
 noted with a -f (for a quarterback who moved up 10 or more
 positions) or a 4 (for a quarterback who moved down 10 or
 more positions).

 We present three different rankings depending on which plays
 are included. We use the first ranking presented (our ranking, all
 plays) as our main ranking. It includes passes, sacks, intercep-
 tions, and runs. Our second ranking excludes runs, while our
 third ranking includes only passes and interceptions. These two
 supplemental rankings are presented to see if there are any un-
 usual differences. For example, Rob Johnson is ranked 22nd

 18 General
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 Table 3. Quarterback Rankings

 Our ranking Our ranking Our ranking
 Player NFL rating All plays No runs No sacks, runs

 R. Cunningham
 R.Johnson

 V. Testaverde

 S. Young
 C. Chandler
 B. Brister

 J. Elway
 N. O'Donnell
 M. Brunell
 B. Johnson

 T. Aikman
 S. Beuerlein
 B. Favre

 D. Flutie
 J. Garrett
 C. Batch
 B.J. Tolliver

 E. Kramer

 E. Zeier

 T. Green
 D. Bledsoe
 R. Gannon

 S. McNair
 D. Marino
 W. Moon

 J. Plummer
 T. Dilfer

 J. Harbaugh
 J. Kitna

 P. Manning
 K. Graham
 K. Detmer

 T. Banks

 D. Kanell

 D. Wuerffel

 G. Foley
 R. Peete

 K. Stewart
 K. Collins
 D. Hollas

 E. Grbac
 C. Whelihan

 B. Hoying
 R. Leaf

 using our main rating but jumps to 4th if sacks and runs are ex-

 cluded. This implies that Johnson was frequently sacked (he had

 30 sacks relative to only 107 pass attempts!) and also explains
 how we ranked him 22nd, since we account for sacks, but the

 NFL rating ranked him 2nd. He is one of the best examples why

 the NFL rating is inadequate. Sacks are very costly to a team
 and Johnson was sacked much more than the average quarter-

 back. As a comparison, fellow Buffalo Bills quarterback Doug
 Flutie had many more pass attempts (354), yet was sacked only

 12 times. A quarterback rating should account for such costly
 plays.

 Overall, the NFL ranking seems to place the highly regarded
 quarterbacks at the top and the lesser quarterbacks at the bot-
 tom. The rank correlation between the NFL ranking and our
 main ranking was 0.84. But there are definitely some devia-
 tions. First of all, the NFL rating ranks Bubby Brister of the
 Denver Broncos ahead of John Elway of the Denver Broncos.
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 Any knowledgeable football enthusiast would wholeheartedly

 choose Elway over Brister. Our ranking does have Elway ahead

 of Brister. Another perplexing result is the fact that the NFL

 rating ranks Rob Johnson of the Buffalo Bills higher than Doug

 Flutie of the Buffalo Bills. Flutie had a terrific year, being named

 the starting quarterback ahead of Johnson and being selected to

 the Pro Bowl. Our ranking has Flutie ahead of Johnson.

 Other rankings that differ significantly are for quarterbacks
 Neil O'Donnell and Eric Zeier. Neil O'Donnell is ranked 8th in

 the NFL rating but only 31st in our rating. This can be explained

 partially by his relatively high number of sacks (30 sacks relative

 to 343 pass attempts). O'Donnell also fumbled on three of the

 sacks, all of which were returned by the defense for touchdowns.

 Zeier's discrepancy can also be partially attributed to a relatively

 large number of sacks (18 sacks relative to 181 pass attempts).

 Excluding runs had little effect on the ratings. Most of the
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 Table 4. Number of Plays With > 3 and 5 Expected Points Gained

 # Plays > 3 # Plays > 5

 R. Cunningham 31 R. Cunningham 11
 C. Chandler 21 S. Young 8
 D. Bledsoe 20 B. Favre 8

 S. Young 19 C. Chandler 7
 J. Elway 19 T. Dilfer 6
 S. Beuerlein 18 V. Testaverde 5
 B. Favre 18 T. Green 4
 V. Testaverde 16 D. Flutie 4
 D. Marino 15 11 tied at 3
 M. Brunell 14

 P. Manning 14
 J. Plummer 13

 T. Green 12
 R. Gannon 11

 quarterbacks that have a history of running did go down slightly

 (as expected) when runs were excluded, such as Steve Young,
 Steve McNair, and Kordell Stewart.

 The play with the largest positive expected points gained be-

 longed to Charlie Batch of the Detroit Lions. On third down and

 10 with 98 yards to the goal line, Batch threw a touchdown pass.

 He went from -1.56 expected points to 7 points, thus gaining
 8.56 expected points. The quarterback play with the largest neg-

 ative expected points gained was mentioned earlier and belonged

 to Brad Johnson of the Minnesota Vikings. His interception on

 third down and 3 from the five-yard line was returned 95 yards

 for a touchdown, going from 4.32 expected points to -7 points,

 thus the expected points "gained" were -11.32.

 We can also determine who had the most big plays. If we
 define a big play to be more than 3 gained expected points, then

 Randall Cunningham of the Minnesota Vikings had the most
 with 31 big plays (again we exclude plays in the last two minutes

 of each half). If we define a big play to be 5 gained expected

 points, then again Cunningham had the most with 11. The top

 quarterbacks with plays gaining more than 3 and 5 expected
 points are presented in Table 4. We can similarly determine who
 had the most bad plays. The quarterbacks with the highest num-

 Table 5. Number of Plays With < -3 and -5 Expected Points Gained

 #Plays < -3 # Plays < -5

 J. Plummer 19 B. Favre 6
 B. Favre 18 V. Testaverde 5
 T. Dilfer 16 K. Stewart 5

 P. Manning 15 J. Plummer 5
 S. Young 14 D. Hollas 5
 D. Hollas 14 R. Leaf 4

 T. Green 14 P. Manning 4
 K. Stewart 13 D. Kanell 4
 K. Collins 13 C. Chandler 4
 R. Leaf 12 T. Dilfer 3

 D. Bledsoe 11 S. Young 3
 D. Marino 11 N. O'Donnell 3

 T. Banks 10 G. Foley 3
 V. Testaverde 9 E. Grbac 3
 C. Whelihan 9 D. Marino 3
 S. Beuerlein 9 D. Bledsoe 3
 C. Chandler 9 11 tied at 2

 ber of plays gaining less than -3 and -5 expected points are
 presented in Table 5.
 Another interesting result is that many of the quarterbacks
 have negative average expected points. Thus, on average they
 contribute negatively with respect to expected points.

 6. CONCLUDING REMARKS

 Modeling a polychotmous response as a function of explana-
 tory variables is a challenging statistical problem. This is es-
 pecially true in the NFL example in which there are large de-
 viations from monotonicity and lots of data. Our tiered logistic
 regression model adapts well to this scenario and the conditional
 structure provides extra insight into the data. Our model could be
 used in any multinomial response case and is especially useful
 in capturing complex functional forms.

 The biggest hurdle that a ranking like ours must overcome is
 the complexity that is involved. The general public is used to sim-
 ple formulas, so a ranking like ours can be intimidating. While
 acknowledging this limitation, we feel like the value added more
 than offsets the added complexity. The method we use is a major
 improvement through the fact that it does not force all plays with

 the same end-result to have the same value. Our expected point
 method of rating players could be extended to rating running
 backs, punters, offenses, defenses, and so on.

 APPENDIX

 The overall BIC can be expressed as

 log - exp(Lt) -it BIC -2 lg (1 T 1 + exp(Lt) it (1-bIt))
 1

 - (model degrees of freedom) . log(n)
 2

 - ( T - exp(Lt) t
 -2( log + ) l( =-2 log H I|q~ 1 + exp(Lt)

 =l1 i:(it=l + exp (Lt)

 +(dl+- +dT) log(n)

 / -2 exp(Lt) Ai t

 -2E log 1 + exp(Lt) )
 t= i:it +=l - )

 +(dl+"- '+dT) ' log(n)

 :-2 E log l +og( 1)e )

 +(dl+" '*+dr)' log(rn)
 I / exp(Li))1/

 + log exp(Lr)T i

 +(dl+"- '+dr) ' log(n)

 ex 1 +exp(Lil)) l
 i:1il=l
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 Z log 1 + exp(LTj) + dTg(nT)
 i:OiT=l

 + dilog(n) + q - + dTlog(n) - dllog(ni)
 _ . -dTlog(nrT)

 -2 S log ( exp(Lp1)i ) + dilog(nl) +

 + log 1 ex(LTLT) ) + dTlog(nT)
 i:qSiT=l

 + dl log( n) + + dTr log(n)
 nI nT

 = BIC + .- + BICT + dl log(n) + .
 ni

 +dT log( -)
 nT

 Thus, minimizing the BIC at each tier does not ensure that the
 overall model will have overall minimum BIC. However, using
 a similar form of the BIC would ensure an overall minimum.

 This form uses log(n) instead of log(nt) and is expressed as

 exp(Lt)X"
 BIC* = -2 E og( t+xp(L )) +dtlog(n).

 i:fit=l

 [Received December 1999. Revised August 2000.]
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