

Baseball VII

Produced by Dr. Mario | UNC STOR 538

Streakiness in Sports

- Question? When Can We Say a Batter is HOT or COLD?
- Hypothetical Batter With Batting Average of 0.333
- Each Plate Appearance, Batter has a 33.3\% Chance of Hitting
- HOT = Player Has an Unusual \# of Consecutive Hits
- COLD = Player Has an Unusual \# of Consecutive Misses
- Ignore Walks and Hit-by-Pitches
- Simulation
- 1,000,000 Plate Appearances
- 33.3\% Chance of Hitting \& 66.7\% Chance of Not Hitting
- Consider Possible Hitting Streaks and Hitting Slumps of 1 to 15
- In 1 Million Plate Appearances, What Would be Considered a HOT Hitting Streak and COLD Hitting Slump?

Streakiness in Sports

```
#Random Simulation of Hitting Streaks of Good Batter
Batting.Average=0.333
hit.sim=sample(x=c(0,1),size=1000000,replace=T,
    prob=c(1-Batting.Average,Batting.Average))
hitting.streak=1:15
streak.count=1:15
for(i in hitting.streak){
    n.streak=0
    count=0
    for(j in 1:(length(hit.sim)-i+1)){
        count=count+1
        if(sum(hit.sim[j:(j+i-1)]==1)==i){
            n.streak=n.streak+1
        }e1se{
            n.streak=n.streak+0
        }
    }
    hitting.streak[i]=n.streak
    streak.count[i]=count
```


Streakiness in Sports

```
#Random Simulation of Hitting slumps of Good Batter
Batting.Average=0.333
hit.sim=sample(x=c (0, ) , size=1000000,replace=T,
    prob=c(1-Batting.Average,Batting.Average))
hitting.slump=1:15
slump.count=1:15
for(i in hitting.slump){
    n.slump=0
    count=0
    for(j in 1:(length(hit.sim)-i+1)){
        count=count+1
            if(sum(hit.sim[j:(j+i-1)]==0)==i){
            n.s7ump=n.slump+1
            }e1se{
            n.s7ump=n.s7ump+0
        }
    }
    hitting.slump[i]=n.slump
    slump.count[i]=count
```


Streakiness in Sports

Streakiness in Sports

- R Code for Figures
ggplot(data=sim.data)+
geom_bar (aes ($\mathrm{x}=1$ length, $\mathrm{y}=$ hitting.streak), stat="identity")+
geom_text (aes ($x=1$ ength, $y=h i t t i n g . s t r e a k$,
7abe $1=$ round(hitting.streak, 2)), vjust=-0.2)+
xlab("Possible Length of Hitting Streak")+
ylab("Relative Frequency")+
theme_classic()+
theme (axis.text=element_text(size=12),
axis.title=element_text(size=14,face="bold"))

4
ggplot (data=sim.data) +
geom_bar (aes ($x=1$ ength, $y=h i t t i n g . s l u m p$), stat="identity")+ geom_text (aes ($x=1$ ength, $y=h i t t i n g . s l u m p$,

1abe1=round(hitting.slump,2)), vjust=-0.2)+
x7ab("Possible Length of Hitting slump")+
ylab("Relative Frequency")+
theme_classic()+
theme (axis.text=element_text(size=12),
axis.title=element_text(size=14,face="bold"))

Streakiness in Sports

- Wald Wolfowitz Runs Test (WWRT)
- Topic Streakiness Pertaining to Wins (W) and Losses (L)
- Suppose a Teams Record is 5-5 (W-L)
- Streaky Would Be WWWWWLLLLL (2 Runs)
- Not Streaky Would Be WLWLWLWLWL (10 Runs)
- Idea: Fewer Runs = More Streaky
- Let W=\# of Wins, L=\# of Losses, and T=W+L
- According to Wold and Wolfowitz, if $X=$ Number of Runs,

$$
E[X]=\mu=\frac{2 \times W \times L}{T}+1 \quad \operatorname{VAR}[X]=\sigma^{2}=\sqrt{\frac{(\mu-1)(\mu-2)}{T-1}}
$$

- For Team with 5-5 Record, $\mu=6$ and $\sigma=1.49$

$$
Z_{1}=\frac{2-6}{1.49}=-2.68 \quad Z_{2}=\frac{10-6}{1.49}=2.68
$$

Streakiness in Sports

- Hypothesis Test
- Null: W's and L's are Randomly Distributed
- Alternative: W's and L's are Streaky
- Random Variable Z Has Approximate Normal Distribution if Number of Games T is Long Enough
- If $Z<-2$, We Would Determine That Team is Streaky
- Suppose in 162 Games, Team is 100-62 with 15 Runs
- Test Statistic

```
> mu=2*100*62/162+1
> sd=sqrt((mu-1)*(mu-2)/(162-1))
> z=(15-mu)/sd
> print(c(mu,sd,z))
[1] 77.543210 5.992915 -10.436192
```

- Conclusion: Ultra Streaky Bruh

Evaluating the Greatest Streak

- Joe DiMaggio
- Played 13 Seasons With the New York Yankees
- Known for 56 Game Hitting Streak (1941)
- "Most Enduring Record in Sports" -New York Times
- Johnny Vander Meer
- Known for Time With the Cincinnati Reds
- No-Hitter Against the Boston Bees (June 11,1938)
- No-Hitter Against the Brooklyn Dodgers (June 15, 1938)
- No Other Pitcher Has Matched This
- What is the Most Difficult Achievement?

Evaluating the Greatest Streak

- Modeling Probabilities Using Poisson Distribution
- Useful for Random Variable $X \in\{0,1,2,3, \ldots\}$
- Probability Mass Function

$$
P(X=x)=\frac{\lambda^{x} e^{-\lambda}}{x!}
$$

- Expected Value

$$
E[X]=\lambda
$$

- Usage in R: Super Mario Averages 5 Shrooms Per Day

$$
\begin{array}{|c}
\begin{array}{c}
>\text { dpois }(7,7 \text { ambda }=5,7 o g=F) \\
{[1] 0.1044449}
\end{array} \\
\xrightarrow{\longrightarrow} P(X=7)=10.4 \%
\end{array} \quad E[X]=\lambda=5
$$

Evaluating the Greatest Streak

- Probability of Independent Events
- If Events A and B are Independent,

$$
P(A \cap B)=P(A) \times P(B)
$$

- Usage in R: Probability Super Mario Fasts for 5 Straight Days
- Random Variables $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$
- Assume They Are Independent and Identically Distributed

$$
\begin{aligned}
P(F A S T) & =P\left(X_{1}=0\right) \times P\left(X_{2}=0\right) \cdots \times P\left(X_{5}=0\right) \\
& =P\left(X_{1}=0\right)^{5}
\end{aligned}
$$

$$
\begin{aligned}
& >\text { dpois }(0,7 \mathrm{ambda=5}, 7 \mathrm{og}=\mathrm{F}) \wedge 5 \\
& {[1] 1.388794 \mathrm{e}-11}
\end{aligned}
$$

Evaluating the Greatest Streak

- How Rare Was Joe DiMaggio's Achievement?
- Assumptions
- Batters Need At Least 500 At-bats
- Not Include Hitting Streaks Across Seasons
- Batters with Over 500 At-bats Averaged 3.5 At-bats Per Game
(Equivalent to 3 At-bats for Half Season and 4 At-bats for Remaining
- Suppose Batter Hits . 333 in 1900 (154 Game Season)
- Probability of Event A3 = Batter Gets a Hit in 3 At-bat Game

$$
P(A 3)=1-(1-.333)^{3}=70.33 \%
$$

- Probability of Event A4 = Batter Gets a Hit in 4 At-bat Game

$$
P(A 4)=1-(1-.333)^{4}=80.21 \%
$$

- Probability of Event A = Hit During 56 Consecutive Games

$$
P(A)=P(A 3)^{28} \times P(A 4)^{28}=0.000011 \%
$$

Evaluating the Greatest Streak

- How Rare Was Joe DiMaggio's Achievement?
- Number of Opportunities to Start Hitting Streak Where Batter is Hitless During the Previous Game
154-56 = 99 Opportunities
- Approximate Probability of Event E = Hitless Game

$$
P(E)=\frac{(1-P(A 3))+(1-P(A 4))}{2}=24.7 \%
$$

- Average Number of Opportunities to Start Winning Streak
$1+98 \times 0.247=25.21$ Opportunites
- Expected Number of 56 Game Hitting Streaks in a Season $25.21 \times P(\mathrm{~A})=0.0000027$

Evaluating the Greatest Streak

- How Rare Was Joe DiMaggio's Achievement?
- Total Number of Batters Between 1900 and 2016 = 8233

```
> library(Lahman)
> Data=Batting %>%
+ filter(yearID>=1900 & yearID<=2016) %>%
    filter(AB>=500) %>%
        summarize(n=n())
> Data$n
[1] }823
```

- Expected Number of 56 Game Winning Streaks for All Batters

$$
\lambda=E\left[\text { Player }_{1}\right]+E\left[\text { Player }_{2}\right]+\cdots+E\left[\text { Player }_{8233}\right] \approx .024
$$

- Probability of Event H = At Least 1 Hitting Streak of 56 Games

$$
P(H)=1-P(\bar{H})=1-\frac{\lambda^{0} e^{-\lambda}}{0!} \approx 2.4 \%
$$

- Batter With Batting Average of 0.33 Requires 9,926 Seasons to Have a 50\% Chance of Getting the 56 Game Winning Streak

Evaluating the Greatest Streak

- How Rare Was Johnny Vander Meer's Achievement?
- Assumptions
- All Games Are Started by Pitchers Who Start Exactly 35 Games (Exactly 951 Pitchers Under This Criteria from 1900 to 2016)
- Assume Probability of No Hitter is 0.062% for All Pitchers for Every Single Game
- Following Similar Ideas from DiMaggio, the Probability of Event N = At Least 1 Starting Pitcher Would Throw Consecutive No Hitters
$P(N)=15.7 \%$
- Both Achievements Are Unlikely But Possible
- Both Achievements Become More Likely As Time Passes

Evaluating the Greatest Streak

- What is the Most Difficult Achievement?

Trick Question...

Lebron James Winning a Championship for

Cleveland \#216

Final Inspiration

So I'm ugly. So what? I never saw anyone hit with his face.
-Yogi Berra

