Basketball IV

Produced by Dr. Mario
UNC STOR 538

NBA Salaries

Recall Baseball Salary Estimation

Based on WAR in Baseball
Assumed Replacement Player Costs \$500,000
Team of Replacement Players Cost \$12.5M (48-114 Record)
Average Team's Salary was $\$ 114 \mathrm{M}$ (81-81 Record)
\$101.5M Needed for Replacement Team to Get to Average
Real Plus-Minus (RPM)
Designed by Jermias Engelmann and Steve Ilardi
Utilized Modified Ridge Regression to Shrink Coefficients Toward the Box Plus-Minus of the Player
Leaders in 2018-2019

RANK	NAME	TEAM	GP	MPG	ORPM	DRPM	RPM
1	Paul George, SG	OKC	77	36.9	4.55	3.08	7.63
2	James Harden, SG	HOU	78	36.8	7.4	0.02	7.42
3	Stephen Curry, PG	GS	69	33.8	5.99	0.85	6.84
4	Giannis Antetokounmpo, PF	MIL	72	32.8	3.16	3.53	6.69

NBA Salaries

Interpretation of RPM

Numbers are Per 100 Possessions
Giannis RPM = 6.69
If Giannis Replaced an Average Player, then his Team Improves by 6.69 Points Over the Opponent Per 100 Possessions

RPM of an Average Player = 0
RPM of a Replacement Player = -3.1 (Equivalent to 10 Percentile)
Team of Replacement Players
Deficit Versus an Average Team

$$
5(-3.1)=-15.5 \text { Points Per } 100 \text { Possessions }
$$

Average Pace in 2017-2018 = 96 Possessions Per Game Conversion of Deficit Per 100 Possessions to Per Game

$$
\left(-\frac{15.5}{100}\right) * 96=-14.88 \text { Points Per Game }
$$

NBA Salaries

Replacement Team Versus Average Team

Average Team Scored 105.6 Points Per Game
Expected Final Score: 90.72 to 105.6 (Difference of 14.88)
Scoring Ratio

$$
\frac{90.72}{105.6}=0.86
$$

Basketball Pythagorean Theorem From Chapter 1 ($\alpha=14$)

$$
\frac{0.86^{14}}{0.86^{14}+1}=10.7 \%
$$

Conclusion: Expect Replacement Team to Win 10.7\% of Games
Final Record $=$ 8.7 Wins and 73.3 Losses

NBA Salaries

Application to NBA Salaries (Based off 2017-2018)
Average Team Payroll Was Approximately \$93M
Minimum Player Salary Between \$500K and \$1.5M
Assume Average Minimum= \$1M
Payroll of Replacement Team = \$12M
Costs $\$ 93 \mathrm{M}$ - $\$ 12 \mathrm{M}=\mathbf{\$ 1 M}$ to Go From Replacement to Average
This is Equivalent to Go From 9 Wins to 41 Wins
Equivalent:
32 Wins $=\$ 81 \mathrm{M}$
For Simplicity/Laziness, 32 Wins $=\$ 80 \mathrm{M}$
Each Win Above Replacement is Worth \$2.5 Million

NBA Salaries

Calculation of Fair Salary

Suppose Player Generated 20 Wins in 2016-2017

$$
\text { Fair Salary }=20 * 2.5=\$ 50 \mathrm{M}
$$

Descriptive Versus Predictive Metrics

Book Calculates Fair Salary of a Player in 2018 Based off Generated Wins From Previous Season

What is the Problem Here?

	Player Wins This Year	Player Wins Next Year
Team Salaries This Year	Fair Pay in Previous Year	Not Helpful?
Team Salaries Next Year	Determining Fair Salary	Fair Pay in Next Year

NBA Salaries

NBA Salary Information Across the Years

Data from Basketball-Reference.com
Data Preview

head (salary)						
A tibble: 6×7						
1eague	player_id	salary	season	season_end	season_start	team
<chr>	<chr>	<int>	<chr>	<int>	<int>	<chr>
NBA	abde1a101	395000	1990-91	1991	1990	Portland Trail B7~
NBA	abde1a101	494000	1991-92	1992	1991	Portland Trail B7~
NBA	abde1a101	500000	1992-93	1993	1992	Boston Celtics
NBA	abde1a101	805000	1993-94	1994	1993	Boston Celtics
NBA	abde1a101	650000	1994-95	1995	1994	Sacramento Kings
NBA	abdulka01	1530000	1984-85	1985	1984	Los Angeles Lakers

Salary Summarized by Season

head(Salary.Data)			
$\begin{aligned} & \text { A tibble: } 6 \times 4 \\ & \text { season_start } \quad n \text { mean.salary sd.salary } \end{aligned}$			
<int>	<int>	<db $7>$	<db 7 >
1984	24	3.49	1.62
1985	23	4.76	1.41
1986	16	1.36	1.26
1987	23	6.05	1.26
1988	25	6.78	1.45
1989	24	4.46	2.13

NBA Salaries

NBA Salary Information Across the Years

Code for Summary Table

```
Salary.Data=Salary %>%
group_by(team,season_start) %>%
summarize(total.salary=sum(salary)/1000000) %>%
ungroup() %>%
group_by(season_start) %>%
summarize(n=n(),mean.salary=mean(total.salary),
sd.salary=sd(total.salary))
```

Figure Showing Change

NBA Salaries

Pythagorean Theorem For Basketball

Modeling Win Percentage Using Points
Win $\% \approx \frac{\left(\frac{\text { Points Scored }}{\text { Points Allowed }}\right)^{\alpha}}{\left(\frac{\text { Points Scored }}{\text { Points Allowed }}\right)^{\alpha}+1}$
From Textbook, $\alpha=14$ Based on Data
Question: Can We Confirm This?
Data from 2014 to 2018 Found on Kaggle

head(Games[,2:9])							
A tibble: 6×8							
Team	Game	Date	Home	Opponent	WINorLOSS	TeamPoints	OpponentPoints
<chr>	<int>	<date>	<chr>	<chr>	<chr>	<int>	<int>
ATL		2014-10-29	Away	TOR	L	102	109
ATL	2	2014-11-01	Home	IND	w	102	92
ATL	3	2014-11-05	Away	SAS	L	92	94
ATL	4	2014-11-07	Away	СНО	L	119	122
ATL	5	2014-11-08	Home	NYK	w	103	96
ATL		2014-11-10	Away	NYK	w	91	85

NBA Salaries

Pythagorean Theorem For Basketball

Modifying Data for Estimating a

```
Games2 = Games %>%
                            mutate(Season=rep (c (2014, 2015, 2016, 2017), each=82*30)) %>%
    group_by(Team,Season) %>%
    summarize(Win.Per=mean(WINorLOSS=="W"),
                                    Scored=mean(TeamPoints),
                            Allowed=mean(OpponentPoints))
```

head(Games2)				
A tibble: 6×5				
Groups	: Tea	am [2]		
Team	Season	Win.Per	Scored	Allowed
<chr>	<db7>	<db7>	<db7>	<db 7 >
ATL	2014	0.732	103.	97.1
ATL	$\underline{2015}$	0.585	103.	99.2
ATL	$\underline{2016}$	0.524	103.	104.
ATL	$\underline{2017}$	0.293	103.	109.
BOS	$\underline{2014}$	0.488	101.	101.
BOS	$\underline{2} 015$	0.585	106.	103.

NBA Salaries

Pythagorean Theorem For Basketball

Minimize Sum of Squares (Predicted Win \% Versus Actual Win \%)

```
pythag.func=function(data,par){
    R=data$Scored/data$Allowed
    y=data$Win.Per
    resid=y-(R\wedge(par[1]))/(R\wedge(par[1])+1)
    return(sum(resid^2))
}
result=optim(par=c (13),fn=pythag.func,data=Games2,method="BFGS")
```

Based on Recent Data, Best α is 14.4564
print(result\$par[1])
.] 14.4564

NBA Salaries

Cost of Winning (Based on Book)
Cost $\$ 12 \mathrm{M}$ to Get 9 Wins Over 82 Games
\$12M is $\$ 81 \mathrm{M}$ Less Than the Average Salary (2017-2018)
Assumption: Costs $\$ 81 \mathrm{M}$ to Be Average
This Implies:

$$
\text { Price Per Win }=\frac{\$ 81 \mathrm{M}}{41-9}=\$ 2.5 \mathrm{M}
$$

Criticism 1

Team Salaries are Highly Skewed and Influenced by Outliers Recommendation: Use Median

Criticism 2

Average Salary may not be the Salary of an Average Team Recommendation: Regress Salary on Wins and Predict When Wins = 41

NBA Salaries

Observe Interesting Data From 2006

```
salary06 = salary %>%
    filter(season_start==2006) %>%
    group_by(team) %>%
    summarize(tota1.salary=sum(salary)/1000000) %>%
    arrange(desc(tota1.salary))
```


head(Salary06)	
A tibble: 6×2	total.salary
team	<db7>
<chr>	117.
New York Knicks	88.4
Dallas Mavericks	77.1
Los Angeles Lakers	75.0
Portland Trail Blazers	69.1
Philadelphia 76ers	66.8
Minnesota Timberwolves	

Team: New York Knicks
Payroll: \$117M
Record: 33-49
Conclusion: Idiots

NBA Salaries

Fix Based on Criticism 1

2017-2018 Season

Average Salary: \$110M

Fix
Median Salary: \$111M

NBA Salaries

Getting Wins and Losses Into Data

Scraping Team Records From Wikipedia

```
wikipedia="https://en.wikipedia.org/wiki/2017%E2%80%9318_NBA_season
wins = wikipedia %>%
    read_htm7() %>%
    html_table(fill=T)
```

wins2=as.data.frame(rbind(as.matrix(wins[[4]]),as.matrix(wins[[5]]),

```
wins2=as.data.frame(rbind(as.matrix(wins[[4]]),as.matrix(wins[[5]]),
    as.matrix(wins[[8]]),as.matrix(wins[[9]])))[,1:2]
    as.matrix(wins[[8]]),as.matrix(wins[[9]])))[,1:2]
names(wins2)=c("team","wins")
names(wins2)=c("team","wins")
str_detect(wins2$team,"..\\p{Pd}.")
str_detect(wins2$team,"..\\p{Pd}.")
wins3=mutate(wins2, team=str_replace(team,"..\\p{Pd}.",""))
```

```
wins3=mutate(wins2, team=str_replace(team,"..\\p{Pd}.",""))
```

```
\begin{tabular}{|rr|}
\hline head(wins3) \\
Team & wins \\
Toronto Raptors & 59 \\
Boston Celtics & 55 \\
Philadelphia 76ers & 52 \\
New York Knicks & 29 \\
Brooklyn Nets & 28 \\
Cleveland Cavaliers & 50
\end{tabular}

\section*{Merging Datasets}


\section*{NBA Salaries}

\section*{Fix Based on Criticism 2}

Linear Regression Model and Fit
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{1m(formula = total.salary \(\sim\) wins, data = salarywins17)} \\
\hline \multicolumn{7}{|l|}{Residuals:
Min
Min Median
30} \\
\hline -21.930-7 & -7.004 & -1.433 & 9.382 & 20.911 & & \\
\hline \multicolumn{7}{|l|}{Coefficients:} \\
\hline & \multicolumn{4}{|l|}{Estimate Std. Error t value} & \(\operatorname{Pr}(>|t|)\) & \\
\hline (Intercept) & & . 5493 & 7.1444 & 11.274 & 0.00000000000639 & *** \\
\hline wins & & . 7281 & 0.1672 & 4.354 & 0.000161 & *** \\
\hline
\end{tabular}

\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}

Prediction for 41 Wins is Almost Identical to Actual Average Salary What is the Value of Knowing the Lower and Upper Limits?


\section*{Final Inspiration}

There is no "I" in team, but there is in win.
- Michael Jordan```

